File size: 7,215 Bytes
966ae59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from __future__ import absolute_import

import os

import torch
import torch.nn as nn

from . import pretrained_networks as pretrained_torch_models


def spatial_average(x, keepdim=True):
    return x.mean([2, 3], keepdim=keepdim)


def upsample(x):
    return nn.Upsample(size=x.shape[2:], mode='bilinear', align_corners=False)(x)


def normalize_tensor(in_feat, eps=1e-10):
    norm_factor = torch.sqrt(torch.sum(in_feat ** 2, dim=1, keepdim=True))
    return in_feat / (norm_factor + eps)


# Learned perceptual metric
class LPIPS(nn.Module):

    def __init__(self,
                 pretrained=True,
                 net='alex',
                 version='0.1',
                 lpips=True,
                 spatial=False,
                 pnet_rand=False,
                 pnet_tune=False,
                 use_dropout=True,
                 model_path=None,
                 eval_mode=True,
                 verbose=True):
        """ Initializes a perceptual loss torch.nn.Module

        Parameters (default listed first)
        ---------------------------------
        lpips : bool
            [True] use linear layers on top of base/trunk network
            [False] means no linear layers; each layer is averaged together
        pretrained : bool
            This flag controls the linear layers, which are only in effect when lpips=True above
            [True] means linear layers are calibrated with human perceptual judgments
            [False] means linear layers are randomly initialized
        pnet_rand : bool
            [False] means trunk loaded with ImageNet classification weights
            [True] means randomly initialized trunk
        net : str
            ['alex','vgg','squeeze'] are the base/trunk networks available
        version : str
            ['v0.1'] is the default and latest
            ['v0.0'] contained a normalization bug; corresponds to old arxiv v1 (https://arxiv.org/abs/1801.03924v1)
        model_path : 'str'
            [None] is default and loads the pretrained weights from paper https://arxiv.org/abs/1801.03924v1

        The following parameters should only be changed if training the network:

        eval_mode : bool
            [True] is for test mode (default)
            [False] is for training mode
        pnet_tune
            [False] keep base/trunk frozen
            [True] tune the base/trunk network
        use_dropout : bool
            [True] to use dropout when training linear layers
            [False] for no dropout when training linear layers
        """
        super(LPIPS, self).__init__()
        if verbose:
            print('Setting up [%s] perceptual loss: trunk [%s], v[%s], spatial [%s]' %
                  ('LPIPS' if lpips else 'baseline', net, version, 'on' if spatial else 'off'))

        self.pnet_type = net
        self.pnet_tune = pnet_tune
        self.pnet_rand = pnet_rand
        self.spatial = spatial
        self.lpips = lpips  # false means baseline of just averaging all layers
        self.version = version
        self.scaling_layer = ScalingLayer()

        if self.pnet_type in ['vgg', 'vgg16']:
            net_type = pretrained_torch_models.vgg16
            self.chns = [64, 128, 256, 512, 512]
        elif self.pnet_type == 'alex':
            net_type = pretrained_torch_models.alexnet
            self.chns = [64, 192, 384, 256, 256]
        elif self.pnet_type == 'squeeze':
            net_type = pretrained_torch_models.squeezenet
            self.chns = [64, 128, 256, 384, 384, 512, 512]
        self.L = len(self.chns)

        self.net = net_type(pretrained=not self.pnet_rand, requires_grad=self.pnet_tune)

        if lpips:
            self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
            self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
            self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
            self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
            self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
            self.lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
            if self.pnet_type == 'squeeze':  # 7 layers for squeezenet
                self.lin5 = NetLinLayer(self.chns[5], use_dropout=use_dropout)
                self.lin6 = NetLinLayer(self.chns[6], use_dropout=use_dropout)
                self.lins += [self.lin5, self.lin6]
            self.lins = nn.ModuleList(self.lins)

            if pretrained:
                if model_path is None:
                    model_path = os.path.join(
                        os.path.dirname(os.path.abspath(__file__)),
                        f"weights/v{version}/{net}.pth"
                    )
                if verbose:
                    print('Loading model from: %s' % model_path)
                self.load_state_dict(torch.load(model_path, map_location='cpu'), strict=False)

        if eval_mode:
            self.eval()

    def forward(self, in0, in1, return_per_layer=False, normalize=False):
        if normalize:  # turn on this flag if input is [0,1] so it can be adjusted to [-1, 1]
            in0 = 2 * in0 - 1
            in1 = 2 * in1 - 1

        # Noting: v0.0 - original release had a bug, where input was not scaled
        if self.version == '0.1':
            in0_input, in1_input = (self.scaling_layer(in0), self.scaling_layer(in1))
        else:
            in0_input, in1_input = in0, in1

        # model forward
        outs0, outs1 = self.net.forward(in0_input), self.net.forward(in1_input)

        feats0, feats1, diffs = {}, {}, {}
        for kk in range(self.L):
            feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
            diffs[kk] = (feats0[kk] - feats1[kk]) ** 2

        if self.lpips:
            if self.spatial:
                res = [upsample(self.lins[kk](diffs[kk])) for kk in range(self.L)]
            else:
                res = [spatial_average(self.lins[kk](diffs[kk]), keepdim=True) for kk in range(self.L)]
        else:
            if self.spatial:
                res = [upsample(diffs[kk].sum(dim=1, keepdim=True)) for kk in range(self.L)]
            else:
                res = [spatial_average(diffs[kk].sum(dim=1, keepdim=True), keepdim=True) for kk in range(self.L)]

        loss = sum(res)

        if return_per_layer:
            return loss, res
        else:
            return loss


class ScalingLayer(nn.Module):
    def __init__(self):
        super(ScalingLayer, self).__init__()
        self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
        self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None])

    def forward(self, inp):
        return (inp - self.shift) / self.scale


class NetLinLayer(nn.Module):
    """A single linear layer which does a 1x1 conv"""

    def __init__(self, chn_in, chn_out=1, use_dropout=False):
        super(NetLinLayer, self).__init__()

        layers = [nn.Dropout(), ] if (use_dropout) else []
        layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
        self.model = nn.Sequential(*layers)

    def forward(self, x):
        return self.model(x)