Spaces:
Running
Running
File size: 20,333 Bytes
966ae59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
"""
Implementation of Content loss, Style loss, LPIPS and DISTS metrics
References:
.. [1] Gatys, Leon and Ecker, Alexander and Bethge, Matthias
(2016). A Neural Algorithm of Artistic Style}
Association for Research in Vision and Ophthalmology (ARVO)
https://arxiv.org/abs/1508.06576
.. [2] Zhang, Richard and Isola, Phillip and Efros, et al.
(2018) The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
https://arxiv.org/abs/1801.03924
"""
from typing import List, Union, Collection
import torch
import torch.nn as nn
from torch.nn.modules.loss import _Loss
from torchvision.models import vgg16, vgg19, VGG16_Weights, VGG19_Weights
from .utils import _validate_input, _reduce
from .functional import similarity_map, L2Pool2d
# Map VGG names to corresponding number in torchvision layer
VGG16_LAYERS = {
"conv1_1": '0', "relu1_1": '1',
"conv1_2": '2', "relu1_2": '3',
"pool1": '4',
"conv2_1": '5', "relu2_1": '6',
"conv2_2": '7', "relu2_2": '8',
"pool2": '9',
"conv3_1": '10', "relu3_1": '11',
"conv3_2": '12', "relu3_2": '13',
"conv3_3": '14', "relu3_3": '15',
"pool3": '16',
"conv4_1": '17', "relu4_1": '18',
"conv4_2": '19', "relu4_2": '20',
"conv4_3": '21', "relu4_3": '22',
"pool4": '23',
"conv5_1": '24', "relu5_1": '25',
"conv5_2": '26', "relu5_2": '27',
"conv5_3": '28', "relu5_3": '29',
"pool5": '30',
}
VGG19_LAYERS = {
"conv1_1": '0', "relu1_1": '1',
"conv1_2": '2', "relu1_2": '3',
"pool1": '4',
"conv2_1": '5', "relu2_1": '6',
"conv2_2": '7', "relu2_2": '8',
"pool2": '9',
"conv3_1": '10', "relu3_1": '11',
"conv3_2": '12', "relu3_2": '13',
"conv3_3": '14', "relu3_3": '15',
"conv3_4": '16', "relu3_4": '17',
"pool3": '18',
"conv4_1": '19', "relu4_1": '20',
"conv4_2": '21', "relu4_2": '22',
"conv4_3": '23', "relu4_3": '24',
"conv4_4": '25', "relu4_4": '26',
"pool4": '27',
"conv5_1": '28', "relu5_1": '29',
"conv5_2": '30', "relu5_2": '31',
"conv5_3": '32', "relu5_3": '33',
"conv5_4": '34', "relu5_4": '35',
"pool5": '36',
}
IMAGENET_MEAN = [0.485, 0.456, 0.406]
IMAGENET_STD = [0.229, 0.224, 0.225]
# Constant used in feature normalization to avoid zero division
EPS = 1e-10
class ContentLoss(_Loss):
r"""Creates Content loss that can be used for image style transfer or as a measure for image to image tasks.
Uses pretrained VGG models from torchvision.
Expects input to be in range [0, 1] or normalized with ImageNet statistics into range [-1, 1]
Args:
feature_extractor: Model to extract features or model name: ``'vgg16'`` | ``'vgg19'``.
layers: List of strings with layer names. Default: ``'relu3_3'``
weights: List of float weight to balance different layers
replace_pooling: Flag to replace MaxPooling layer with AveragePooling. See references for details.
distance: Method to compute distance between features: ``'mse'`` | ``'mae'``.
reduction: Specifies the reduction type:
``'none'`` | ``'mean'`` | ``'sum'``. Default:``'mean'``
mean: List of float values used for data standardization. Default: ImageNet mean.
If there is no need to normalize data, use [0., 0., 0.].
std: List of float values used for data standardization. Default: ImageNet std.
If there is no need to normalize data, use [1., 1., 1.].
normalize_features: If true, unit-normalize each feature in channel dimension before scaling
and computing distance. See references for details.
Examples:
>>> loss = ContentLoss()
>>> x = torch.rand(3, 3, 256, 256, requires_grad=True)
>>> y = torch.rand(3, 3, 256, 256)
>>> output = loss(x, y)
>>> output.backward()
References:
Gatys, Leon and Ecker, Alexander and Bethge, Matthias (2016).
A Neural Algorithm of Artistic Style
Association for Research in Vision and Ophthalmology (ARVO)
https://arxiv.org/abs/1508.06576
Zhang, Richard and Isola, Phillip and Efros, et al. (2018)
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
IEEE/CVF Conference on Computer Vision and Pattern Recognition
https://arxiv.org/abs/1801.03924
"""
def __init__(self, feature_extractor: Union[str, torch.nn.Module] = "vgg16", layers: Collection[str] = ("relu3_3",),
weights: List[Union[float, torch.Tensor]] = [1.], replace_pooling: bool = False,
distance: str = "mse", reduction: str = "mean", mean: List[float] = IMAGENET_MEAN,
std: List[float] = IMAGENET_STD, normalize_features: bool = False,
allow_layers_weights_mismatch: bool = False) -> None:
assert allow_layers_weights_mismatch or len(layers) == len(weights), \
f'Lengths of provided layers and weighs mismatch ({len(weights)} weights and {len(layers)} layers), ' \
f'which will cause incorrect results. Please provide weight for each layer.'
super().__init__()
if callable(feature_extractor):
self.model = feature_extractor
self.layers = layers
else:
if feature_extractor == "vgg16":
# self.model = vgg16(pretrained=True, progress=False).features
self.model = vgg16(weights=VGG16_Weights.DEFAULT, progress=False).features
self.layers = [VGG16_LAYERS[l] for l in layers]
elif feature_extractor == "vgg19":
# self.model = vgg19(pretrained=True, progress=False).features
self.model = vgg19(weights=VGG19_Weights.DEFAULT, progress=False).features
self.layers = [VGG19_LAYERS[l] for l in layers]
else:
raise ValueError("Unknown feature extractor")
if replace_pooling:
self.model = self.replace_pooling(self.model)
# Disable gradients
for param in self.model.parameters():
param.requires_grad_(False)
self.distance = {
"mse": nn.MSELoss,
"mae": nn.L1Loss,
}[distance](reduction='none')
self.weights = [torch.tensor(w) if not isinstance(w, torch.Tensor) else w for w in weights]
mean = torch.tensor(mean)
std = torch.tensor(std)
self.mean = mean.view(1, -1, 1, 1)
self.std = std.view(1, -1, 1, 1)
self.normalize_features = normalize_features
self.reduction = reduction
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
r"""Computation of Content loss between feature representations of prediction :math:`x` and
target :math:`y` tensors.
Args:
x: An input tensor. Shape :math:`(N, C, H, W)`.
y: A target tensor. Shape :math:`(N, C, H, W)`.
Returns:
Content loss between feature representations
"""
_validate_input([x, y], dim_range=(4, 4), data_range=(0, -1))
self.model.to(x)
x_features = self.get_features(x)
y_features = self.get_features(y)
distances = self.compute_distance(x_features, y_features)
# Scale distances, then average in spatial dimensions, then stack and sum in channels dimension
loss = torch.cat([(d * w.to(d)).mean(dim=[2, 3]) for d, w in zip(distances, self.weights)], dim=1).sum(dim=1)
return _reduce(loss, self.reduction)
def compute_distance(self, x_features: List[torch.Tensor], y_features: List[torch.Tensor]) -> List[torch.Tensor]:
r"""Take L2 or L1 distance between feature maps depending on ``distance``.
Args:
x_features: Features of the input tensor.
y_features: Features of the target tensor.
Returns:
Distance between feature maps
"""
return [self.distance(x, y) for x, y in zip(x_features, y_features)]
def get_features(self, x: torch.Tensor) -> List[torch.Tensor]:
r"""
Args:
x: Tensor. Shape :math:`(N, C, H, W)`.
Returns:
List of features extracted from intermediate layers
"""
# Normalize input
x = (x - self.mean.to(x)) / self.std.to(x)
features = []
for name, module in self.model._modules.items():
x = module(x)
if name in self.layers:
features.append(self.normalize(x) if self.normalize_features else x)
return features
@staticmethod
def normalize(x: torch.Tensor) -> torch.Tensor:
r"""Normalize feature maps in channel direction to unit length.
Args:
x: Tensor. Shape :math:`(N, C, H, W)`.
Returns:
Normalized input
"""
norm_factor = torch.sqrt(torch.sum(x ** 2, dim=1, keepdim=True))
return x / (norm_factor + EPS)
def replace_pooling(self, module: torch.nn.Module) -> torch.nn.Module:
r"""Turn All MaxPool layers into AveragePool
Args:
module: Module to change MaxPool int AveragePool
Returns:
Module with AveragePool instead MaxPool
"""
module_output = module
if isinstance(module, torch.nn.MaxPool2d):
module_output = torch.nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
for name, child in module.named_children():
module_output.add_module(name, self.replace_pooling(child))
return module_output
class StyleLoss(ContentLoss):
r"""Creates Style loss that can be used for image style transfer or as a measure in
image to image tasks. Computes distance between Gram matrices of feature maps.
Uses pretrained VGG models from torchvision.
By default expects input to be in range [0, 1], which is then normalized by ImageNet statistics into range [-1, 1].
If no normalisation is required, change `mean` and `std` values accordingly.
Args:
feature_extractor: Model to extract features or model name: ``'vgg16'`` | ``'vgg19'``.
layers: List of strings with layer names. Default: ``'relu3_3'``
weights: List of float weight to balance different layers
replace_pooling: Flag to replace MaxPooling layer with AveragePooling. See references for details.
distance: Method to compute distance between features: ``'mse'`` | ``'mae'``.
reduction: Specifies the reduction type:
``'none'`` | ``'mean'`` | ``'sum'``. Default:``'mean'``
mean: List of float values used for data standardization. Default: ImageNet mean.
If there is no need to normalize data, use [0., 0., 0.].
std: List of float values used for data standardization. Default: ImageNet std.
If there is no need to normalize data, use [1., 1., 1.].
normalize_features: If true, unit-normalize each feature in channel dimension before scaling
and computing distance. See references for details.
Examples:
>>> loss = StyleLoss()
>>> x = torch.rand(3, 3, 256, 256, requires_grad=True)
>>> y = torch.rand(3, 3, 256, 256)
>>> output = loss(x, y)
>>> output.backward()
References:
Gatys, Leon and Ecker, Alexander and Bethge, Matthias (2016).
A Neural Algorithm of Artistic Style
Association for Research in Vision and Ophthalmology (ARVO)
https://arxiv.org/abs/1508.06576
Zhang, Richard and Isola, Phillip and Efros, et al. (2018)
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
IEEE/CVF Conference on Computer Vision and Pattern Recognition
https://arxiv.org/abs/1801.03924
"""
def compute_distance(self, x_features: torch.Tensor, y_features: torch.Tensor):
r"""Take L2 or L1 distance between Gram matrices of feature maps depending on ``distance``.
Args:
x_features: Features of the input tensor.
y_features: Features of the target tensor.
Returns:
Distance between Gram matrices
"""
x_gram = [self.gram_matrix(x) for x in x_features]
y_gram = [self.gram_matrix(x) for x in y_features]
return [self.distance(x, y) for x, y in zip(x_gram, y_gram)]
@staticmethod
def gram_matrix(x: torch.Tensor) -> torch.Tensor:
r"""Compute Gram matrix for batch of features.
Args:
x: Tensor. Shape :math:`(N, C, H, W)`.
Returns:
Gram matrix for given input
"""
B, C, H, W = x.size()
gram = []
for i in range(B):
features = x[i].view(C, H * W)
# Add fake channel dimension
gram.append(torch.mm(features, features.t()).unsqueeze(0))
return torch.stack(gram)
class LPIPS(ContentLoss):
r"""Learned Perceptual Image Patch Similarity metric. Only VGG16 learned weights are supported.
By default expects input to be in range [0, 1], which is then normalized by ImageNet statistics into range [-1, 1].
If no normalisation is required, change `mean` and `std` values accordingly.
Args:
replace_pooling: Flag to replace MaxPooling layer with AveragePooling. See references for details.
distance: Method to compute distance between features: ``'mse'`` | ``'mae'``.
reduction: Specifies the reduction type:
``'none'`` | ``'mean'`` | ``'sum'``. Default:``'mean'``
mean: List of float values used for data standardization. Default: ImageNet mean.
If there is no need to normalize data, use [0., 0., 0.].
std: List of float values used for data standardization. Default: ImageNet std.
If there is no need to normalize data, use [1., 1., 1.].
Examples:
>>> loss = LPIPS()
>>> x = torch.rand(3, 3, 256, 256, requires_grad=True)
>>> y = torch.rand(3, 3, 256, 256)
>>> output = loss(x, y)
>>> output.backward()
References:
Gatys, Leon and Ecker, Alexander and Bethge, Matthias (2016).
A Neural Algorithm of Artistic Style
Association for Research in Vision and Ophthalmology (ARVO)
https://arxiv.org/abs/1508.06576
Zhang, Richard and Isola, Phillip and Efros, et al. (2018)
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
IEEE/CVF Conference on Computer Vision and Pattern Recognition
https://arxiv.org/abs/1801.03924
https://github.com/richzhang/PerceptualSimilarity
"""
_weights_url = "https://github.com/photosynthesis-team/" + \
"photosynthesis.metrics/releases/download/v0.4.0/lpips_weights.pt"
def __init__(self, replace_pooling: bool = False, distance: str = "mse", reduction: str = "mean",
mean: List[float] = IMAGENET_MEAN, std: List[float] = IMAGENET_STD, ) -> None:
lpips_layers = ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3']
lpips_weights = torch.hub.load_state_dict_from_url(self._weights_url, progress=False)
super().__init__("vgg16", layers=lpips_layers, weights=lpips_weights,
replace_pooling=replace_pooling, distance=distance,
reduction=reduction, mean=mean, std=std,
normalize_features=True)
class DISTS(ContentLoss):
r"""Deep Image Structure and Texture Similarity metric.
By default expects input to be in range [0, 1], which is then normalized by ImageNet statistics into range [-1, 1].
If no normalisation is required, change `mean` and `std` values accordingly.
Args:
reduction: Specifies the reduction type:
``'none'`` | ``'mean'`` | ``'sum'``. Default:``'mean'``
mean: List of float values used for data standardization. Default: ImageNet mean.
If there is no need to normalize data, use [0., 0., 0.].
std: List of float values used for data standardization. Default: ImageNet std.
If there is no need to normalize data, use [1., 1., 1.].
Examples:
>>> loss = DISTS()
>>> x = torch.rand(3, 3, 256, 256, requires_grad=True)
>>> y = torch.rand(3, 3, 256, 256)
>>> output = loss(x, y)
>>> output.backward()
References:
Keyan Ding, Kede Ma, Shiqi Wang, Eero P. Simoncelli (2020).
Image Quality Assessment: Unifying Structure and Texture Similarity.
https://arxiv.org/abs/2004.07728
https://github.com/dingkeyan93/DISTS
"""
_weights_url = "https://github.com/photosynthesis-team/piq/releases/download/v0.4.1/dists_weights.pt"
def __init__(self, reduction: str = "mean", mean: List[float] = IMAGENET_MEAN,
std: List[float] = IMAGENET_STD) -> None:
dists_layers = ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3']
channels = [3, 64, 128, 256, 512, 512]
weights = torch.hub.load_state_dict_from_url(self._weights_url, progress=False)
dists_weights = list(torch.split(weights['alpha'], channels, dim=1))
dists_weights.extend(torch.split(weights['beta'], channels, dim=1))
super().__init__("vgg16", layers=dists_layers, weights=dists_weights,
replace_pooling=True, reduction=reduction, mean=mean, std=std,
normalize_features=False, allow_layers_weights_mismatch=True)
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
r"""
Args:
x: An input tensor. Shape :math:`(N, C, H, W)`.
y: A target tensor. Shape :math:`(N, C, H, W)`.
Returns:
Deep Image Structure and Texture Similarity loss, i.e. ``1-DISTS`` in range [0, 1].
"""
_, _, H, W = x.shape
if min(H, W) > 256:
x = torch.nn.functional.interpolate(
x, scale_factor=256 / min(H, W), recompute_scale_factor=False, mode='bilinear')
y = torch.nn.functional.interpolate(
y, scale_factor=256 / min(H, W), recompute_scale_factor=False, mode='bilinear')
loss = super().forward(x, y)
return 1 - loss
def compute_distance(self, x_features: torch.Tensor, y_features: torch.Tensor) -> List[torch.Tensor]:
r"""Compute structure similarity between feature maps
Args:
x_features: Features of the input tensor.
y_features: Features of the target tensor.
Returns:
Structural similarity distance between feature maps
"""
structure_distance, texture_distance = [], []
# Small constant for numerical stability
EPS = 1e-6
for x, y in zip(x_features, y_features):
x_mean = x.mean([2, 3], keepdim=True)
y_mean = y.mean([2, 3], keepdim=True)
structure_distance.append(similarity_map(x_mean, y_mean, constant=EPS))
x_var = ((x - x_mean) ** 2).mean([2, 3], keepdim=True)
y_var = ((y - y_mean) ** 2).mean([2, 3], keepdim=True)
xy_cov = (x * y).mean([2, 3], keepdim=True) - x_mean * y_mean
texture_distance.append((2 * xy_cov + EPS) / (x_var + y_var + EPS))
return structure_distance + texture_distance
def get_features(self, x: torch.Tensor) -> List[torch.Tensor]:
r"""
Args:
x: Input tensor
Returns:
List of features extracted from input tensor
"""
features = super().get_features(x)
# Add input tensor as an additional feature
features.insert(0, x)
return features
def replace_pooling(self, module: torch.nn.Module) -> torch.nn.Module:
r"""Turn All MaxPool layers into L2Pool
Args:
module: Module to change MaxPool into L2Pool
Returns:
Module with L2Pool instead of MaxPool
"""
module_output = module
if isinstance(module, torch.nn.MaxPool2d):
module_output = L2Pool2d(kernel_size=3, stride=2, padding=1)
for name, child in module.named_children():
module_output.add_module(name, self.replace_pooling(child))
return module_output
|