File size: 5,388 Bytes
966ae59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# -*- coding: utf-8 -*-
# Copyright (c) XiMing Xing. All rights reserved.
# Author: XiMing Xing
# Description:

import pathlib
from typing import Union, List, Text, BinaryIO, AnyStr

import matplotlib.pyplot as plt
import torch
import torchvision.transforms as transforms
from torchvision.utils import make_grid

__all__ = [
    'sample2pil_transforms',
    'pt2numpy_transforms',
    'plt_pt_img',
    'save_grid_images_and_labels',
    'save_grid_images_and_captions',
]

# generate sample to PIL images
sample2pil_transforms = transforms.Compose([
    # unnormalizing to [0,1]
    transforms.Lambda(lambda t: torch.clamp((t + 1) / 2, min=0.0, max=1.0)),
    # Add 0.5 after unnormalizing to [0, 255]
    transforms.Lambda(lambda t: torch.clamp(t * 255. + 0.5, min=0, max=255)),
    # CHW to HWC
    transforms.Lambda(lambda t: t.permute(1, 2, 0)),
    # to numpy ndarray, dtype int8
    transforms.Lambda(lambda t: t.to('cpu', torch.uint8).numpy()),
    # Converts a numpy ndarray of shape H x W x C to a PIL Image
    transforms.ToPILImage(),
])

# generate sample to PIL images
pt2numpy_transforms = transforms.Compose([
    # Add 0.5 after unnormalizing to [0, 255]
    transforms.Lambda(lambda t: torch.clamp(t * 255. + 0.5, min=0, max=255)),
    # CHW to HWC
    transforms.Lambda(lambda t: t.permute(1, 2, 0)),
    # to numpy ndarray, dtype int8
    transforms.Lambda(lambda t: t.to('cpu', torch.uint8).numpy()),
])


def plt_pt_img(
        pt_img: torch.Tensor,
        save_path: AnyStr = None,
        title: AnyStr = None,
        dpi: int = 300
):
    grid = make_grid(pt_img, normalize=True, pad_value=2)
    ndarr = pt2numpy_transforms(grid)
    plt.imshow(ndarr)
    plt.axis("off")
    plt.tight_layout()
    if title is not None:
        plt.title(f"{title}")

    plt.show()
    if save_path is not None:
        plt.savefig(save_path, dpi=dpi)

    plt.close()


@torch.no_grad()
def save_grid_images_and_labels(
        images: Union[torch.Tensor, List[torch.Tensor]],
        probs: Union[torch.Tensor, List[torch.Tensor]],
        labels: Union[torch.Tensor, List[torch.Tensor]],
        classes: Union[torch.Tensor, List[torch.Tensor]],
        fp: Union[Text, pathlib.Path, BinaryIO],
        nrow: int = 4,
        normalize: bool = True
) -> None:
    """Save a given Tensor into an image file.
    """
    num_images = len(images)
    num_rows, num_cols = _get_subplot_shape(num_images, nrow)

    fig = plt.figure(figsize=(25, 20))

    for i in range(num_images):
        ax = fig.add_subplot(num_rows, num_cols, i + 1)

        image, true_label, prob = images[i], labels[i], probs[i]

        true_prob = prob[true_label]
        incorrect_prob, incorrect_label = torch.max(prob, dim=0)
        true_class = classes[true_label]

        incorrect_class = classes[incorrect_label]

        if normalize:
            image = sample2pil_transforms(image)

        ax.imshow(image)
        title = f'true label: {true_class} ({true_prob:.3f})\n ' \
                f'pred label: {incorrect_class} ({incorrect_prob:.3f})'
        ax.set_title(title, fontsize=20)
        ax.axis('off')

    fig.subplots_adjust(hspace=0.3)

    plt.savefig(fp)
    plt.close()


@torch.no_grad()
def save_grid_images_and_captions(
        images: Union[torch.Tensor, List[torch.Tensor]],
        captions: List,
        fp: Union[Text, pathlib.Path, BinaryIO],
        nrow: int = 4,
        normalize: bool = True
) -> None:
    """
    Save a grid of images and their captions into an image file.

    Args:
        images (Union[torch.Tensor, List[torch.Tensor]]): A list of images to display.
        captions (List): A list of captions for each image.
        fp (Union[Text, pathlib.Path, BinaryIO]): The file path to save the image to.
        nrow (int, optional): The number of images to display in each row. Defaults to 4.
        normalize (bool, optional): Whether to normalize the image or not. Defaults to False.
    """
    num_images = len(images)
    num_rows, num_cols = _get_subplot_shape(num_images, nrow)

    fig = plt.figure(figsize=(25, 20))

    for i in range(num_images):
        ax = fig.add_subplot(num_rows, num_cols, i + 1)
        image, caption = images[i], captions[i]

        if normalize:
            image = sample2pil_transforms(image)

        ax.imshow(image)
        title = f'"{caption}"' if num_images > 1 else f'"{captions}"'
        title = _insert_newline(title)
        ax.set_title(title, fontsize=20)
        ax.axis('off')

    fig.subplots_adjust(hspace=0.3)

    plt.savefig(fp)
    plt.close()


def _get_subplot_shape(num_images, nrow):
    """
    Calculate the number of rows and columns required to display images in a grid.

    Args:
        num_images (int): The total number of images to display.
        nrow (int): The maximum number of images to display in each row.

    Returns:
        Tuple[int, int]: The number of rows and columns required to display images in a grid.
    """
    num_cols = min(num_images, nrow)
    num_rows = (num_images + num_cols - 1) // num_cols
    return num_rows, num_cols


def _insert_newline(string, point=9):
    # split by blank
    words = string.split()
    if len(words) <= point:
        return string

    word_chunks = [words[i:i + point] for i in range(0, len(words), point)]
    new_string = "\n".join(" ".join(chunk) for chunk in word_chunks)
    return new_string