Spaces:
Running
Running
File size: 33,551 Bytes
966ae59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 |
import collections
import re
import clip
import torch
import torch.nn as nn
from torchvision import models, transforms
def compute_grad_norm_losses(losses_dict, model, points_mlp):
'''
Balances multiple losses by weighting them inversly proportional
to their overall gradient contribution.
Args:
losses: A dictionary of losses.
model: A PyTorch model.
Returns:
A dictionary of loss weights.
'''
grad_norms = {}
for loss_name, loss in losses_dict.items():
loss.backward(retain_graph=True)
grad_sum = sum([w.grad.abs().sum().item() for w in model.parameters() if w.grad is not None])
num_elem = sum([w.numel() for w in model.parameters() if w.grad is not None])
grad_norms[loss_name] = grad_sum / num_elem
model.zero_grad()
points_mlp.zero_grad()
grad_norms_total = sum(grad_norms.values())
loss_weights = {}
for loss_name, loss in losses_dict.items():
weight = (grad_norms_total - grad_norms[loss_name]) / ((len(losses_dict) - 1) * grad_norms_total)
loss_weights[loss_name] = weight
return loss_weights
class Loss(nn.Module):
def __init__(self, args, mask=None, device="cpu"):
super(Loss, self).__init__()
self.args = args
self.percep_loss = args.percep_loss
self.device = device
self.train_with_clip = args.train_with_clip
self.clip_weight = args.clip_weight
self.start_clip = args.start_clip
self.clip_conv_loss = args.clip_conv_loss
self.clip_mask_loss = args.clip_mask_loss
self.clip_fc_loss_weight = args.clip_fc_loss_weight
self.clip_text_guide = args.clip_text_guide
self.width_optim = args.width_optim
self.width_loss_weight = args.width_loss_weight
self.ratio_loss = args.ratio_loss
if isinstance(args.clip_conv_layer_weights, str):
self.args.clip_conv_layer_weights = [
float(item) for item in args.clip_conv_layer_weights.split(',')
]
self.losses_to_apply = self.get_losses_to_apply()
self.gradnorm = args.gradnorm
if args.gradnorm:
self.new_weights = {}
self.loss_mapper = {}
if self.clip_conv_loss:
self.loss_mapper["clip_conv_loss"] = CLIPConvLoss(args, mask, device)
if self.clip_mask_loss:
self.loss_mapper["clip_mask_loss"] = CLIPmaskLoss(args, mask, device)
if self.width_optim:
self.loss_mapper["width_loss"] = WidthLoss(args, device)
if self.ratio_loss:
self.loss_mapper["ratio_loss"] = RatioLoss(args, device)
def get_losses_to_apply(self):
losses_to_apply = []
if self.percep_loss != "none":
losses_to_apply.append(self.percep_loss)
if self.train_with_clip and self.start_clip == 0:
losses_to_apply.append("clip")
if self.clip_conv_loss:
losses_to_apply.append("clip_conv_loss")
if self.clip_mask_loss:
losses_to_apply.append("clip_mask_loss")
if self.clip_text_guide:
losses_to_apply.append("clip_text")
if self.width_optim:
losses_to_apply.append("width_loss")
if self.ratio_loss:
losses_to_apply.append("ratio_loss")
return losses_to_apply
def update_losses_to_apply(self, epoch, width_opt=None, mode="train"):
if "clip" not in self.losses_to_apply:
if self.train_with_clip:
if epoch > self.start_clip:
self.losses_to_apply.append("clip")
# for width loss switch
if width_opt is not None:
if self.width_optim and "width_loss" not in self.losses_to_apply and mode == "eval":
self.losses_to_apply.append("width_loss")
if width_opt and "width_loss" not in self.losses_to_apply:
self.losses_to_apply.append("width_loss")
if not width_opt and "width_loss" in self.losses_to_apply and mode == "train":
self.losses_to_apply.remove("width_loss")
def forward(self, sketches, targets, epoch, widths=None, renderer=None, optimizer=None, mode="train",
width_opt=None):
loss = 0
self.update_losses_to_apply(epoch, width_opt, mode)
losses_dict = {}
loss_coeffs = {}
if self.width_optim:
loss_coeffs["width_loss"] = self.width_loss_weight
clip_loss_names = []
for loss_name in self.losses_to_apply:
if loss_name in ["clip_conv_loss", "clip_mask_loss"]:
conv_loss = self.loss_mapper[loss_name](
sketches, targets, mode)
for layer in conv_loss.keys():
if "normalization" in layer:
loss_coeffs[layer] = 0 # include layer 11 in gradnorm but not in final loss
losses_dict[layer] = conv_loss[layer]
else:
layer_w_index = int(re.findall(r'\d+', layer)[0]) # get the layer's number
losses_dict[layer] = conv_loss[layer]
loss_coeffs[layer] = self.args.clip_conv_layer_weights[layer_w_index]
clip_loss_names.append(layer)
elif loss_name == "width_loss":
losses_dict[loss_name] = self.loss_mapper[loss_name](widths, renderer.get_strokes_in_canvas_count())
elif loss_name == "l2":
losses_dict[loss_name] = self.loss_mapper[loss_name](
sketches, targets).mean()
elif loss_name == "ratio_loss":
continue
else:
losses_dict[loss_name] = self.loss_mapper[loss_name](sketches, targets, mode).mean()
losses_dict_original = losses_dict.copy()
if self.gradnorm:
if mode == "train":
if self.width_optim:
self.new_weights = compute_grad_norm_losses(losses_dict, renderer.get_width_mlp(),
renderer.get_mlp())
else:
self.new_weights = compute_grad_norm_losses(losses_dict, renderer.get_mlp(), renderer.get_mlp())
# if mode is eval, take the norm wieghts of prev step, since we don't have grads here
for key in losses_dict.keys():
# losses_dict_copy[key] = losses_dict_copy[key] * self.new_weights[key]
losses_dict[key] = losses_dict[key] * self.new_weights[key]
losses_dict_copy = {} # return the normalised losses before weighting
for k_ in losses_dict.keys():
losses_dict_copy[k_] = losses_dict[k_].clone().detach()
for key in losses_dict.keys():
# loss = loss + losses_dict[key] * loss_coeffs[key]
if loss_coeffs[key] == 0:
losses_dict[key] = losses_dict[key].detach() * loss_coeffs[key]
else:
losses_dict[key] = losses_dict[key] * loss_coeffs[key]
if self.ratio_loss:
losses_dict["ratio_loss"] = self.loss_mapper["ratio_loss"](losses_dict_original, clip_loss_names).mean()
losses_dict_original_detach = {}
for k_ in losses_dict_original.keys():
losses_dict_original_detach[k_] = losses_dict_original[k_].clone().detach()
return losses_dict, losses_dict_copy, losses_dict_original_detach
class CLIPLoss(torch.nn.Module):
def __init__(self, args, device):
super(CLIPLoss, self).__init__()
self.args = args
self.device = device
self.model, clip_preprocess = clip.load(
'ViT-B/32', self.device, jit=False)
self.model.eval()
self.preprocess = transforms.Compose(
[clip_preprocess.transforms[-1]]) # clip normalisation
self.NUM_AUGS = args.num_aug_clip
augemntations = []
if "affine" in args.augemntations:
augemntations.append(transforms.RandomPerspective(
fill=0, p=1.0, distortion_scale=0.5))
augemntations.append(transforms.RandomResizedCrop(
224, scale=(0.8, 0.8), ratio=(1.0, 1.0)))
augemntations.append(
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)))
self.augment_trans = transforms.Compose(augemntations)
self.calc_target = True
self.include_target_in_aug = args.include_target_in_aug
self.counter = 0
self.augment_both = args.augment_both
def forward(self, sketches, targets, mode="train"):
if self.calc_target:
targets_ = self.preprocess(targets).to(self.device)
self.targets_features = self.model.encode_image(targets_).detach()
self.calc_target = False
if mode == "eval":
# for regular clip distance, no augmentations
with torch.no_grad():
sketches = self.preprocess(sketches).to(self.device)
sketches_features = self.model.encode_image(sketches)
return 1. - torch.cosine_similarity(sketches_features, self.targets_features)
loss_clip = 0
sketch_augs = []
img_augs = []
for n in range(self.NUM_AUGS):
augmented_pair = self.augment_trans(torch.cat([sketches, targets]))
sketch_augs.append(augmented_pair[0].unsqueeze(0))
sketch_batch = torch.cat(sketch_augs)
sketch_features = self.model.encode_image(sketch_batch)
for n in range(self.NUM_AUGS):
loss_clip += (1. - torch.cosine_similarity(
sketch_features[n:n + 1], self.targets_features, dim=1))
self.counter += 1
return loss_clip
# return 1. - torch.cosine_similarity(sketches_features, self.targets_features)
class LPIPS(torch.nn.Module):
def __init__(self, pretrained=True, normalize=True, pre_relu=True, device=None):
"""
Args:
pre_relu(bool): if True, selects features **before** reLU activations
"""
super(LPIPS, self).__init__()
# VGG using perceptually-learned weights (LPIPS metric)
self.normalize = normalize
self.pretrained = pretrained
augemntations = []
augemntations.append(transforms.RandomPerspective(
fill=0, p=1.0, distortion_scale=0.5))
augemntations.append(transforms.RandomResizedCrop(
224, scale=(0.8, 0.8), ratio=(1.0, 1.0)))
self.augment_trans = transforms.Compose(augemntations)
self.feature_extractor = LPIPS._FeatureExtractor(
pretrained, pre_relu).to(device)
def _l2_normalize_features(self, x, eps=1e-10):
nrm = torch.sqrt(torch.sum(x * x, dim=1, keepdim=True))
return x / (nrm + eps)
def forward(self, pred, target, mode="train"):
"""Compare VGG features of two inputs."""
# Get VGG features
sketch_augs, img_augs = [pred], [target]
if mode == "train":
for n in range(4):
augmented_pair = self.augment_trans(torch.cat([pred, target]))
sketch_augs.append(augmented_pair[0].unsqueeze(0))
img_augs.append(augmented_pair[1].unsqueeze(0))
xs = torch.cat(sketch_augs, dim=0)
ys = torch.cat(img_augs, dim=0)
pred = self.feature_extractor(xs)
target = self.feature_extractor(ys)
# L2 normalize features
if self.normalize:
pred = [self._l2_normalize_features(f) for f in pred]
target = [self._l2_normalize_features(f) for f in target]
# TODO(mgharbi) Apply Richard's linear weights?
if self.normalize:
diffs = [torch.sum((p - t) ** 2, 1)
for (p, t) in zip(pred, target)]
else:
# mean instead of sum to avoid super high range
diffs = [torch.mean((p - t) ** 2, 1)
for (p, t) in zip(pred, target)]
# Spatial average
diffs = [diff.mean([1, 2]) for diff in diffs]
return sum(diffs)
class _FeatureExtractor(torch.nn.Module):
def __init__(self, pretrained, pre_relu):
super(LPIPS._FeatureExtractor, self).__init__()
vgg_pretrained = models.vgg16(pretrained=pretrained).features
self.breakpoints = [0, 4, 9, 16, 23, 30]
if pre_relu:
for i, _ in enumerate(self.breakpoints[1:]):
self.breakpoints[i + 1] -= 1
# Split at the maxpools
for i, b in enumerate(self.breakpoints[:-1]):
ops = torch.nn.Sequential()
for idx in range(b, self.breakpoints[i + 1]):
op = vgg_pretrained[idx]
ops.add_module(str(idx), op)
# print(ops)
self.add_module("group{}".format(i), ops)
# No gradients
for p in self.parameters():
p.requires_grad = False
# Torchvision's normalization: <https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101>
self.register_buffer("shift", torch.Tensor(
[0.485, 0.456, 0.406]).view(1, 3, 1, 1))
self.register_buffer("scale", torch.Tensor(
[0.229, 0.224, 0.225]).view(1, 3, 1, 1))
def forward(self, x):
feats = []
x = (x - self.shift) / self.scale
for idx in range(len(self.breakpoints) - 1):
m = getattr(self, "group{}".format(idx))
x = m(x)
feats.append(x)
return feats
class WidthLoss(torch.nn.Module):
def __init__(self, args, device):
super(WidthLoss, self).__init__()
self.width_loss_type = args.width_loss_type
self.width_loss_weight = args.width_loss_weight
self.zero = torch.tensor(0).to(device)
def forward(self, widths, strokes_in_canvas_count):
sum_w = torch.sum(widths)
if self.width_loss_type == "L1_hinge": # this option is deprecated
return torch.max(self.zero, sum_w - self.width_loss_weight)
return sum_w / strokes_in_canvas_count
class RatioLoss(torch.nn.Module):
def __init__(self, args, device):
super(RatioLoss, self).__init__()
self.target_ratio = args.ratio_loss
self.mse_loss = nn.MSELoss()
def forward(self, losses_dict_original, clip_loss_names):
loss_clip = 0
for clip_loss in clip_loss_names:
loss_clip = loss_clip + losses_dict_original[clip_loss]
loss_clip = loss_clip * self.target_ratio
width_loss = losses_dict_original["width_loss"]
return self.mse_loss(width_loss, loss_clip)
class L2_(torch.nn.Module):
def __init__(self):
"""
Args:
pre_relu(bool): if True, selects features **before** reLU activations
"""
super(L2_, self).__init__()
# VGG using perceptually-learned weights (LPIPS metric)
augemntations = []
augemntations.append(transforms.RandomPerspective(
fill=0, p=1.0, distortion_scale=0.5))
augemntations.append(transforms.RandomResizedCrop(
224, scale=(0.8, 0.8), ratio=(1.0, 1.0)))
augemntations.append(
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)))
self.augment_trans = transforms.Compose(augemntations)
# LOG.warning("LPIPS is untested")
def forward(self, pred, target, mode="train"):
"""Compare VGG features of two inputs."""
# Get VGG features
sketch_augs, img_augs = [pred], [target]
if mode == "train":
for n in range(4):
augmented_pair = self.augment_trans(torch.cat([pred, target]))
sketch_augs.append(augmented_pair[0].unsqueeze(0))
img_augs.append(augmented_pair[1].unsqueeze(0))
pred = torch.cat(sketch_augs, dim=0)
target = torch.cat(img_augs, dim=0)
diffs = [torch.square(p - t).mean() for (p, t) in zip(pred, target)]
return sum(diffs)
class CLIPVisualEncoder(nn.Module):
def __init__(self, clip_model, device, mask_cls="none", apply_mask=False, mask_attention=False):
super().__init__()
self.clip_model = clip_model
self.featuremaps = None
self.device = device
self.n_channels = 3
self.kernel_h = 32
self.kernel_w = 32
self.step = 32
self.num_patches = 49
self.mask_cls = mask_cls
self.apply_mask = apply_mask
self.mask_attention = mask_attention
for i in range(12): # 12 resblocks in VIT visual transformer
self.clip_model.visual.transformer.resblocks[i].register_forward_hook(
self.make_hook(i))
def make_hook(self, name):
def hook(module, input, output):
if len(output.shape) == 3:
self.featuremaps[name] = output.permute(
1, 0, 2) # LND -> NLD bs, smth, 768
else:
self.featuremaps[name] = output
return hook
def forward(self, x, masks=None, mode="train"):
masks_flat = torch.ones((x.shape[0], 50, 768)).to(self.device) # without any effect
attn_map = None
if masks is not None and self.apply_mask:
x_copy = x.detach().clone()
patches_x = x_copy.unfold(2, self.kernel_h, self.step).unfold(3, self.kernel_w, self.step).reshape(-1,
self.n_channels,
self.num_patches,
32, 32)
# split the masks into patches (the same input patches to the transformer)
# shape is (batch_size, channel, num_patches, patch_size, patch_size) = (5, 3, 49, 32, 32)
patches_mask = masks.unfold(2, self.kernel_h, self.step).unfold(3, self.kernel_w, self.step).reshape(-1,
self.n_channels,
self.num_patches,
32, 32)
# masks_ is a binary mask (batch_size, 1, 7, ,7) to say which patch should be masked out
masks_ = torch.ones((x.shape[0], 1, 7, 7)).to(self.device)
for i in range(masks.shape[0]):
for j in range(self.num_patches):
# we mask a patch if more than 20% of the patch is masked
zeros = (patches_mask[i, 0, j] == 0).sum() / (self.kernel_w * self.kernel_h)
if zeros > 0.2:
masks_[i, :, j // 7, j % 7] = 0
if self.mask_attention:
mask2 = masks_[:, 0].reshape(-1, 49).to(self.device) # .to(device) shape (5, 49)
mask2 = torch.cat([torch.ones(mask2.shape[0], 1).to(self.device), mask2], dim=-1)
mask2 = mask2.unsqueeze(1)
attn_map = mask2.repeat(1, 50, 1).to(self.device) # 5, 50, 50
attn_map[:, 0, 0] = 1
attn_map = 1 - attn_map
indixes = (attn_map == 0).nonzero() # shape [136, 2] [[aug_im],[index]]
attn_map = attn_map.repeat(12, 1, 1).bool() # [60, 50, 50]
# masks_flat's shape is (5, 49), for each image in the batch we have 49 flags indicating if to mask the i'th patch or not
masks_flat = masks_[:, 0].reshape(-1, self.num_patches)
# now we add the cls token mask, it's all ones for now since we want to leave it
# now the shape is (5, 50) where the first number in each of the 5 rows is 1 (meaning - son't mask the cls token)
masks_flat = torch.cat([torch.ones(masks_flat.shape[0], 1).to(self.device), masks_flat],
dim=1) # include cls by default
# now we duplicate this from (5, 50) to (5, 50, 768) to match the tokens dimentions
masks_flat = masks_flat.unsqueeze(2).repeat(1, 1, 768) # shape is (5, 50, 768)
elif self.mask_cls != "none":
if self.mask_cls == "only_cls":
masks_flat = torch.zeros((5, 50, 768)).to(self.device)
masks_flat[:, 0, :] = 1
elif self.mask_cls == "cls_out":
masks_flat[:, 0, :] = 0
self.featuremaps = collections.OrderedDict()
fc_features = self.clip_model.encode_image(x).float()
featuremaps = [self.featuremaps[k] * masks_flat for k in range(12)]
return fc_features, featuremaps
def l2_layers(xs_conv_features, ys_conv_features, clip_model_name):
return [torch.square(x_conv - y_conv).mean() for x_conv, y_conv in
zip(xs_conv_features, ys_conv_features)]
def l1_layers(xs_conv_features, ys_conv_features, clip_model_name):
return [torch.abs(x_conv - y_conv).mean() for x_conv, y_conv in
zip(xs_conv_features, ys_conv_features)]
def cos_layers(xs_conv_features, ys_conv_features, clip_model_name):
if "RN" in clip_model_name:
return [torch.square(x_conv, y_conv, dim=1).mean() for x_conv, y_conv in
zip(xs_conv_features, ys_conv_features)]
return [(1 - torch.cosine_similarity(x_conv, y_conv, dim=1)).mean() for x_conv, y_conv in
zip(xs_conv_features, ys_conv_features)]
class CLIPConvLoss(torch.nn.Module):
def __init__(self, args, mask, device):
# mask is a binary tensor with shape (1,3,224,224)
super(CLIPConvLoss, self).__init__()
self.device = device
self.mask = mask
self.loss_mask = args.loss_mask
assert self.loss_mask in ["none", "back", "for"]
self.apply_mask = (self.loss_mask != "none")
if self.loss_mask == "for":
# default for the mask is to mask out the background
# if mask loss is for it means we want to maskout the foreground
self.mask = 1 - mask
self.clip_model_name = args.clip_model_name
assert self.clip_model_name in [
"RN50",
"RN101",
"RN50x4",
"RN50x16",
"ViT-B/32",
"ViT-B/16",
]
self.clip_conv_loss_type = args.clip_conv_loss_type
self.clip_fc_loss_type = "Cos" # args.clip_fc_loss_type
assert self.clip_conv_loss_type in [
"L2", "Cos", "L1",
]
assert self.clip_fc_loss_type in [
"L2", "Cos", "L1",
]
self.distance_metrics = \
{
"L2": l2_layers,
"L1": l1_layers,
"Cos": cos_layers
}
self.model, clip_preprocess = clip.load(
self.clip_model_name, self.device, jit=False)
if self.clip_model_name.startswith("ViT"):
self.loss_log_name = "vit"
self.visual_encoder = CLIPVisualEncoder(self.model, self.device)
self.l11_norm = False
else:
self.loss_log_name = "rn"
self.visual_model = self.model.visual
layers = list(self.model.visual.children())
init_layers = torch.nn.Sequential(*layers)[:8]
self.layer1 = layers[8]
self.layer2 = layers[9]
self.layer3 = layers[10]
self.layer4 = layers[11]
self.att_pool2d = layers[12]
self.args = args
self.img_size = clip_preprocess.transforms[1].size
self.model.eval()
self.target_transform = transforms.Compose([
transforms.ToTensor(),
]) # clip normalisation
self.normalize_transform = transforms.Compose([
clip_preprocess.transforms[0], # Resize
clip_preprocess.transforms[1], # CenterCrop
clip_preprocess.transforms[-1], # Normalize
])
self.model.eval()
self.num_augs = self.args.num_aug_clip
augemntations = []
if "affine" in args.augemntations:
augemntations.append(transforms.RandomPerspective(
fill=0, p=1.0, distortion_scale=0.5))
augemntations.append(transforms.RandomResizedCrop(
224, scale=(0.8, 0.8), ratio=(1.0, 1.0)))
augemntations.append(
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)))
self.augment_trans = transforms.Compose(augemntations)
self.clip_fc_layer_dims = None # self.args.clip_fc_layer_dims
self.clip_conv_layer_dims = None # self.args.clip_conv_layer_dims
self.clip_fc_loss_weight = args.clip_fc_loss_weight
self.counter = 0
def forward(self, sketch, target, mode="train"):
"""
Parameters
----------
sketch: Torch Tensor [1, C, H, W]
target: Torch Tensor [1, C, H, W]
"""
conv_loss_dict = {}
if self.apply_mask:
sketch *= self.mask
x = sketch.to(self.device)
y = target.to(self.device)
sketch_augs, img_augs = [self.normalize_transform(x)], [
self.normalize_transform(y)]
if mode == "train":
for n in range(self.num_augs):
augmented_pair = self.augment_trans(torch.cat([x, y]))
sketch_augs.append(augmented_pair[0].unsqueeze(0))
img_augs.append(augmented_pair[1].unsqueeze(0))
xs = torch.cat(sketch_augs, dim=0).to(self.device)
ys = torch.cat(img_augs, dim=0).to(self.device)
if self.clip_model_name.startswith("RN"):
xs_fc_features, xs_conv_features = self.forward_inspection_clip_resnet(
xs.contiguous())
ys_fc_features, ys_conv_features = self.forward_inspection_clip_resnet(
ys.detach())
else:
xs_fc_features, xs_conv_features = self.visual_encoder(xs, mode=mode)
ys_fc_features, ys_conv_features = self.visual_encoder(ys, mode=mode)
conv_loss = self.distance_metrics[self.clip_conv_loss_type](
xs_conv_features, ys_conv_features, self.clip_model_name)
for layer, w in enumerate(self.args.clip_conv_layer_weights):
if w:
conv_loss_dict[f"clip_{self.loss_log_name}_l{layer}"] = conv_loss[layer]
if layer == 11 and self.l11_norm:
conv_loss_dict[f"clip_{self.loss_log_name}_l{layer}_normalization"] = conv_loss[layer]
if self.clip_fc_loss_weight:
# fc distance is always cos
# fc_loss = torch.nn.functional.mse_loss(xs_fc_features, ys_fc_features).mean()
fc_loss = (1 - torch.cosine_similarity(xs_fc_features,
ys_fc_features, dim=1)).mean()
conv_loss_dict[f"fc_{self.loss_log_name}"] = fc_loss * self.clip_fc_loss_weight
self.counter += 1
return conv_loss_dict
def forward_inspection_clip_resnet(self, x):
def stem(m, x):
for conv, bn in [(m.conv1, m.bn1), (m.conv2, m.bn2), (m.conv3, m.bn3)]:
x = m.relu(bn(conv(x)))
x = m.avgpool(x)
return x
x = x.type(self.visual_model.conv1.weight.dtype)
x = stem(self.visual_model, x)
x1 = self.layer1(x)
x2 = self.layer2(x1)
x3 = self.layer3(x2)
x4 = self.layer4(x3)
y = self.att_pool2d(x4)
return y, [x, x1, x2, x3, x4]
class CLIPmaskLoss(torch.nn.Module):
def __init__(self, args, mask, device):
super(CLIPmaskLoss, self).__init__()
self.args = args
self.mask = mask
self.device = device
self.loss_mask = args.loss_mask
assert self.loss_mask in ["none", "back", "for", "back_latent", "for_latent"]
self.apply_mask = (self.loss_mask != "none")
self.dilated_mask = args.dilated_mask
if self.dilated_mask:
kernel_tensor = torch.ones((1, 1, 11, 11)).to(self.device)
mask_ = torch.clamp(
torch.nn.functional.conv2d(mask[:, 0, :, :].unsqueeze(1), kernel_tensor, padding=(5, 5)), 0, 1)
mask = torch.cat([mask_, mask_, mask_], axis=1)
if "for" in self.loss_mask:
# default for the mask is to mask out the background
# if mask loss is for it means we want to maskout the foreground
self.mask = 1 - mask
self.clip_model_name = args.clip_model_name
self.clip_for_model_name = "RN101"
self.valid_models = [
"RN50",
"RN101",
"RN50x4",
"RN50x16",
"ViT-B/32",
"ViT-B/16",
]
assert self.clip_model_name in self.valid_models and self.clip_for_model_name in self.valid_models
self.clip_conv_layer_weights = args.clip_conv_layer_weights
self.clip_conv_loss_type = args.clip_conv_loss_type
self.clip_fc_loss_type = "Cos"
self.num_augs = args.num_aug_clip
self.distance_metrics = \
{
"L2": l2_layers,
"L1": l1_layers,
"Cos": cos_layers
}
# background model (ViT)
self.model, clip_preprocess = clip.load(
self.clip_model_name, self.device, jit=False)
self.model.eval()
if self.clip_model_name.startswith("ViT"):
self.visual_encoder = CLIPVisualEncoder(self.model, self.device, args.mask_cls, self.apply_mask,
args.mask_attention)
self.img_size = clip_preprocess.transforms[1].size
self.target_transform = transforms.Compose([
transforms.ToTensor(),
]) # clip normalisation
self.normalize_transform = transforms.Compose([
# clip_preprocess.transforms[0], # Resize
# clip_preprocess.transforms[1], # CenterCrop
clip_preprocess.transforms[-1], # Normalize
])
augemntations = []
augemntations.append(transforms.RandomPerspective(
fill=0, p=1.0, distortion_scale=0.5))
augemntations.append(transforms.RandomResizedCrop(
224, scale=(0.8, 0.8), ratio=(1.0, 1.0)))
# augemntations.append(transforms.RandomResizedCrop(
# 224, scale=(0.4, 0.9), ratio=(1.0, 1.0)))
self.augment_trans = transforms.Compose(augemntations)
self.clip_fc_layer_dims = None # self.args.clip_fc_layer_dims
self.clip_conv_layer_dims = None # self.args.clip_conv_layer_dims
self.clip_fc_loss_weight = 0
self.counter = 0
def forward(self, sketch, target, mode="train"):
"""
Parameters
----------
sketch: Torch Tensor [1, C, H, W]
target: Torch Tensor [1, C, H, W]
"""
conv_loss_dict = {}
x = sketch.to(self.device)
y = target.to(self.device)
sketch_augs, img_augs, masks = [x], [y], [self.mask]
if mode == "train":
for n in range(self.num_augs):
augmented_pair = self.augment_trans(torch.cat([x, y, self.mask]))
sketch_augs.append(augmented_pair[0].unsqueeze(0))
img_augs.append(augmented_pair[1].unsqueeze(0))
masks.append(augmented_pair[2].unsqueeze(0))
xs = torch.cat(sketch_augs, dim=0).to(self.device)
ys = torch.cat(img_augs, dim=0).to(self.device)
masks = torch.cat(masks, dim=0).to(self.device)
masks[masks < 0.5] = 0
masks[masks >= 0.5] = 1
# background pass
if self.apply_mask and "latent" not in self.loss_mask:
# if "latent" not in self.loss_mask:
xs_back = self.normalize_transform(xs * masks)
else:
xs_back = self.normalize_transform(xs)
ys_back = self.normalize_transform(ys)
if "latent" not in self.loss_mask:
masks = None
xs_fc_features, xs_conv_features = self.visual_encoder(xs_back, masks, mode=mode)
ys_fc_features, ys_conv_features = self.visual_encoder(ys_back, masks, mode=mode)
conv_loss = self.distance_metrics[self.clip_conv_loss_type](
xs_conv_features, ys_conv_features, self.clip_model_name)
for layer, w in enumerate(self.clip_conv_layer_weights):
if w:
conv_loss_dict[f"clip_vit_l{layer}"] = conv_loss[layer] * w
self.counter += 1
return conv_loss_dict
def forward_inspection_clip_resnet(self, x):
def stem(m, x):
for conv, bn in [(m.conv1, m.bn1), (m.conv2, m.bn2), (m.conv3, m.bn3)]:
x = m.relu(bn(conv(x)))
x = m.avgpool(x)
return x
x = x.type(self.visual_model.conv1.weight.dtype)
x = stem(self.visual_model, x)
x1 = self.layer1(x)
x2 = self.layer2(x1)
x3 = self.layer3(x2)
x4 = self.layer4(x3)
y = self.att_pool2d(x4)
return y, [x, x1, x2, x3, x4]
|