File size: 32,939 Bytes
966ae59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
import pathlib
import random

import numpy as np
import omegaconf
import pydiffvg
import torch
import torch.nn as nn
from PIL import Image
from pytorch_svgrender.diffvg_warp import DiffVGState
from pytorch_svgrender.libs.modules.edge_map.DoG import XDoG
from pytorch_svgrender.painter.clipasso import modified_clip as clip
from pytorch_svgrender.painter.clipasso.grad_cam import gradCAM
from torchvision import transforms


class Painter(DiffVGState):

    def __init__(
            self,
            method_cfg: omegaconf.DictConfig,
            diffvg_cfg: omegaconf.DictConfig,
            num_strokes: int = 4,
            canvas_size: int = 224,
            device=None,
            target_im=None,
            mask=None
    ):
        super(Painter, self).__init__(device, print_timing=diffvg_cfg.print_timing,
                                      canvas_width=canvas_size, canvas_height=canvas_size)

        self.args = method_cfg
        self.num_paths = num_strokes
        self.num_segments = method_cfg.num_segments
        self.width = method_cfg.width
        self.control_points_per_seg = method_cfg.control_points_per_seg
        self.num_control_points = torch.zeros(self.num_segments, dtype=torch.int32) + (self.control_points_per_seg - 2)

        self.opacity_optim = method_cfg.force_sparse
        self.num_stages = method_cfg.num_stages
        self.noise_thresh = method_cfg.noise_thresh
        self.softmax_temp = method_cfg.softmax_temp

        self.add_random_noise = "noise" in method_cfg.augemntations
        self.optimize_points = method_cfg.optimize_points
        self.optimize_points_global = method_cfg.optimize_points
        self.points_init = []  # for mlp training

        self.color_vars_threshold = method_cfg.color_vars_threshold

        self.path_svg = method_cfg.path_svg
        self.strokes_per_stage = self.num_paths
        self.optimize_flag = []

        # attention related for strokes initialisation
        self.attention_init = method_cfg.attention_init
        self.saliency_model = method_cfg.saliency_model
        self.xdog_intersec = method_cfg.xdog_intersec
        self.mask_object_attention = method_cfg.mask_object_attention

        self.text_target = method_cfg.text_target  # for clip gradients
        self.saliency_clip_model = method_cfg.saliency_clip_model
        self.image2clip_input = self.clip_preprocess(target_im)

        self.mask = mask
        self.attention_map = self.set_attention_map() if self.attention_init else None

        self.thresh = self.set_attention_threshold_map() if self.attention_init else None
        self.strokes_counter = 0  # counts the number of calls to "get_path"
        self.epoch = 0
        self.final_epoch = method_cfg.num_iter - 1

        if "for" in method_cfg.loss_mask:
            # default for the mask is to mask out the background
            # if mask loss is for it means we want to maskout the foreground
            self.mask = 1 - mask

        self.mlp_train = method_cfg.mlp_train
        self.width_optim = method_cfg.width_optim
        self.width_optim_global = method_cfg.width_optim

        if self.width_optim:
            self.init_widths = torch.ones((self.num_paths)).to(device) * 1.5
            self.mlp_width = WidthMLP(num_strokes=self.num_paths, num_cp=self.control_points_per_seg,
                                      width_optim=self.width_optim).to(device)
            self.mlp_width_weights_path = method_cfg.mlp_width_weights_path
            self.mlp_width_weight_init()
        self.gumbel_temp = method_cfg.gumbel_temp
        self.mlp = MLP(num_strokes=self.num_paths, num_cp=self.control_points_per_seg, width_optim=self.width_optim).to(
            device) if self.mlp_train else None
        self.mlp_points_weights_path = method_cfg.mlp_points_weights_path
        self.mlp_points_weight_init()
        self.out_of_canvas_mask = torch.ones((self.num_paths)).to(self.device)

    def turn_off_points_optim(self):
        self.optimize_points = False

    def switch_opt(self):
        self.width_optim = not self.width_optim
        self.optimize_points = not self.optimize_points

    def mlp_points_weight_init(self):
        if self.mlp_points_weights_path != "none":
            checkpoint = torch.load(self.mlp_points_weights_path)
            self.mlp.load_state_dict(checkpoint['model_state_dict'])
            print("mlp checkpoint loaded from ", self.mlp_points_weights_path)

    def mlp_width_weight_init(self):
        if self.mlp_width_weights_path == "none":
            self.mlp_width.apply(init_weights)
        else:
            checkpoint = torch.load(self.mlp_width_weights_path)
            self.mlp_width.load_state_dict(checkpoint['model_state_dict'])
            print("mlp checkpoint loaded from ", self.mlp_width_weights_path)

    def init_image(self, stage=0):
        if stage > 0:
            # Noting: if multi stages training than add new strokes on existing ones
            # don't optimize on previous strokes
            self.optimize_flag = [False for i in range(len(self.shapes))]
            for i in range(self.strokes_per_stage):
                stroke_color = torch.tensor([0.0, 0.0, 0.0, 1.0])
                path = self.get_path()
                self.shapes.append(path)
                path_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor([len(self.shapes) - 1]),
                                                 fill_color=None,
                                                 stroke_color=stroke_color)
                self.shape_groups.append(path_group)
                self.optimize_flag.append(True)
        else:
            num_paths_exists = 0
            if self.path_svg is not None and pathlib.Path(self.path_svg).exists():
                print(f"-> init svg from `{self.path_svg}` ...")

                self.canvas_width, self.canvas_height, self.shapes, self.shape_groups = self.load_svg(self.path_svg)
                # if you want to add more strokes to existing ones and optimize on all of them
                num_paths_exists = len(self.shapes)
                for path in self.shapes:
                    self.points_init.append(path.points)
            for i in range(num_paths_exists, self.num_paths):
                stroke_color = torch.tensor([0.0, 0.0, 0.0, 1.0])
                path = self.get_path()
                self.shapes.append(path)
                path_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor([len(self.shapes) - 1]),
                                                 fill_color=None,
                                                 stroke_color=stroke_color)
                self.shape_groups.append(path_group)
            self.optimize_flag = [True for i in range(len(self.shapes))]

    def get_image(self, mode="train"):
        if self.mlp_train:
            img = self.mlp_pass(mode)
        else:
            img = self.render_warp(mode)
        opacity = img[:, :, 3:4]
        img = opacity * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device=self.device) * (1 - opacity)
        img = img[:, :, :3]
        # Convert img from HWC to NCHW
        img = img.unsqueeze(0)
        img = img.permute(0, 3, 1, 2).to(self.device)  # NHWC -> NCHW
        return img

    def mlp_pass(self, mode, eps=1e-4):
        """
        update self.shapes etc through mlp pass instead of directly (should be updated with the optimizer as well).
        """
        if self.optimize_points_global:
            points_vars = self.points_init
            # reshape and normalise to [-1,1] range
            points_vars = torch.stack(points_vars).unsqueeze(0).to(self.device)
            points_vars = points_vars / self.canvas_width
            points_vars = 2 * points_vars - 1
            if self.optimize_points:
                points = self.mlp(points_vars)
            else:
                with torch.no_grad():
                    points = self.mlp(points_vars)

        else:
            points = torch.stack(self.points_init).unsqueeze(0).to(self.device)

        if self.width_optim and mode != "init":  # first iter use just the location mlp
            widths_ = self.mlp_width(self.init_widths).clamp(min=1e-8)
            mask_flipped = (1 - widths_).clamp(min=1e-8)
            v = torch.stack((torch.log(widths_), torch.log(mask_flipped)), dim=-1)
            hard_mask = torch.nn.functional.gumbel_softmax(v, self.gumbel_temp, False)
            self.stroke_probs = hard_mask[:, 0] * self.out_of_canvas_mask
            self.widths = self.stroke_probs * self.init_widths

            # normalize back to canvas size [0, 224] and reshape
        all_points = 0.5 * (points + 1.0) * self.canvas_width
        all_points = all_points + eps * torch.randn_like(all_points)
        all_points = all_points.reshape((-1, self.num_paths, self.control_points_per_seg, 2))

        if self.width_optim_global and not self.width_optim:
            self.widths = self.widths.detach()
            # all_points = all_points.detach()

        # define new primitives to render
        shapes = []
        shape_groups = []
        for p in range(self.num_paths):
            width = torch.tensor(self.width)
            if self.width_optim_global and mode != "init":
                width = self.widths[p]
            path = pydiffvg.Path(
                num_control_points=self.num_control_points, points=all_points[:, p].reshape((-1, 2)),
                stroke_width=width, is_closed=False)
            if mode == "init":
                # do once at the begining, define a mask for strokes that are outside the canvas
                is_in_canvas_ = self.is_in_canvas(self.canvas_width, self.canvas_height, path)
                if not is_in_canvas_:
                    self.out_of_canvas_mask[p] = 0
            shapes.append(path)
            path_group = pydiffvg.ShapeGroup(
                shape_ids=torch.tensor([len(shapes) - 1]),
                fill_color=None,
                stroke_color=torch.tensor([0, 0, 0, 1]))
            shape_groups.append(path_group)

        _render = pydiffvg.RenderFunction.apply
        scene_method_cfg = pydiffvg.RenderFunction.serialize_scene( \
            self.canvas_width, self.canvas_height, shapes, shape_groups)
        img = _render(self.canvas_width,  # width
                      self.canvas_height,  # height
                      2,  # num_samples_x
                      2,  # num_samples_y
                      0,  # seed
                      None,
                      *scene_method_cfg)
        self.shapes = shapes.copy()
        self.shape_groups = shape_groups.copy()
        return img

    def get_path(self):
        points = []
        p0 = self.inds_normalised[self.strokes_counter] if self.attention_init else (random.random(), random.random())
        points.append(p0)

        for j in range(self.num_segments):
            radius = 0.05
            for k in range(self.control_points_per_seg - 1):
                p1 = (p0[0] + radius * (random.random() - 0.5), p0[1] + radius * (random.random() - 0.5))
                points.append(p1)
                p0 = p1
        points = torch.tensor(points).to(self.device)
        points[:, 0] *= self.canvas_width
        points[:, 1] *= self.canvas_height

        self.points_init.append(points)
        path = pydiffvg.Path(num_control_points=self.num_control_points,
                             points=points,
                             stroke_width=torch.tensor(self.width),
                             is_closed=False)
        self.strokes_counter += 1
        return path

    def render_warp(self, mode):
        if not self.mlp_train:
            if self.opacity_optim:
                for group in self.shape_groups:
                    group.stroke_color.data[:3].clamp_(0., 0.)  # to force black stroke
                    group.stroke_color.data[-1].clamp_(0., 1.)  # opacity
                    # group.stroke_color.data[-1] = (group.stroke_color.data[-1] >= self.color_vars_threshold).float()
            # uncomment if you want to add random noise
            if self.add_random_noise:
                if random.random() > self.noise_thresh:
                    eps = 0.01 * min(self.canvas_width, self.canvas_height)
                    for path in self.shapes:
                        path.points.data.add_(eps * torch.randn_like(path.points))

        if self.width_optim and mode != "init":
            widths_ = self.mlp_width(self.init_widths).clamp(min=1e-8)
            mask_flipped = 1 - widths_
            v = torch.stack((torch.log(widths_), torch.log(mask_flipped)), dim=-1)
            hard_mask = torch.nn.functional.gumbel_softmax(v, self.gumbel_temp, False)
            self.stroke_probs = hard_mask[:, 0] * self.out_of_canvas_mask
            self.widths = self.stroke_probs * self.init_widths

        if self.optimize_points:
            _render = pydiffvg.RenderFunction.apply
            scene_method_cfg = pydiffvg.RenderFunction.serialize_scene( \
                self.canvas_width, self.canvas_height, self.shapes, self.shape_groups)
            img = _render(self.canvas_width,  # width
                          self.canvas_height,  # height
                          2,  # num_samples_x
                          2,  # num_samples_y
                          0,  # seed
                          None,
                          *scene_method_cfg)
        else:
            points = torch.stack(self.points_init).unsqueeze(0).to(self.device)
            shapes = []
            shape_groups = []
            for p in range(self.num_paths):
                width = torch.tensor(self.width)
                if self.width_optim:
                    width = self.widths[p]
                path = pydiffvg.Path(
                    num_control_points=self.num_control_points, points=points[:, p].reshape((-1, 2)),
                    stroke_width=width, is_closed=False)
                shapes.append(path)
                path_group = pydiffvg.ShapeGroup(
                    shape_ids=torch.tensor([len(shapes) - 1]),
                    fill_color=None,
                    stroke_color=torch.tensor([0, 0, 0, 1]))
                shape_groups.append(path_group)

            _render = pydiffvg.RenderFunction.apply
            scene_method_cfg = pydiffvg.RenderFunction.serialize_scene( \
                self.canvas_width, self.canvas_height, shapes, shape_groups)
            img = _render(self.canvas_width,  # width
                          self.canvas_height,  # height
                          2,  # num_samples_x
                          2,  # num_samples_y
                          0,  # seed
                          None,
                          *scene_method_cfg)
            self.shapes = shapes.copy()
            self.shape_groups = shape_groups.copy()

        return img

    def parameters(self):
        if self.optimize_points:
            if self.mlp_train:
                self.points_vars = self.mlp.parameters()
            else:
                self.points_vars = []
                # storkes' location optimization
                for i, path in enumerate(self.shapes):
                    if self.optimize_flag[i]:
                        path.points.requires_grad = True
                        self.points_vars.append(path.points)
                        self.optimize_flag[i] = False

        if self.width_optim:
            return self.points_vars, self.mlp_width.parameters()
        return self.points_vars

    def get_mlp(self):
        return self.mlp

    def get_width_mlp(self):
        if self.width_optim_global:
            return self.mlp_width
        else:
            return None

    def set_color_parameters(self):
        # for storkes' color optimization (opacity)
        self.color_vars = []
        for i, group in enumerate(self.shape_groups):
            if self.optimize_flag[i]:
                group.stroke_color.requires_grad = True
                self.color_vars.append(group.stroke_color)
        return self.color_vars

    def get_color_parameters(self):
        return self.color_vars

    def get_widths(self):
        if self.width_optim_global:
            return self.stroke_probs
        return None

    def get_strokes_in_canvas_count(self):
        return self.out_of_canvas_mask.sum()

    def get_strokes_count(self):
        if self.width_optim_global:
            with torch.no_grad():
                return torch.sum(self.stroke_probs)
        return self.num_paths

    def is_in_canvas(self, canvas_width, canvas_height, path):
        shapes, shape_groups = [], []
        stroke_color = torch.tensor([0.0, 0.0, 0.0, 1.0])
        shapes.append(path)
        path_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor([len(shapes) - 1]),
                                         fill_color=None,
                                         stroke_color=stroke_color)
        shape_groups.append(path_group)
        _render = pydiffvg.RenderFunction.apply
        scene_method_cfg = pydiffvg.RenderFunction.serialize_scene(
            canvas_width, canvas_height, shapes, shape_groups)
        img = _render(canvas_width,  # width
                      canvas_height,  # height
                      2,  # num_samples_x
                      2,  # num_samples_y
                      0,  # seed
                      None,
                      *scene_method_cfg)
        img = img[:, :, 3:4] * img[:, :, :3] + \
              torch.ones(img.shape[0], img.shape[1], 3,
                         device=self.device) * (1 - img[:, :, 3:4])
        img = img[:, :, :3].detach().cpu().numpy()
        return (1 - img).sum()

    def save_svg(self, output_dir, name):
        if not self.width_optim:
            pydiffvg.save_svg('{}/{}.svg'.format(output_dir, name), self.canvas_width, self.canvas_height, self.shapes,
                              self.shape_groups)
        else:
            stroke_color = torch.tensor([0.0, 0.0, 0.0, 1.0])
            new_shapes, new_shape_groups = [], []
            for path in self.shapes:
                is_in_canvas_ = True
                w = path.stroke_width / 1.5
                if w > 0.7 and is_in_canvas_:
                    new_shapes.append(path)
                    path_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor([len(new_shapes) - 1]),
                                                     fill_color=None,
                                                     stroke_color=stroke_color)
                    new_shape_groups.append(path_group)
            pydiffvg.save_svg('{}/{}.svg'.format(output_dir, name), self.canvas_width, self.canvas_height, new_shapes,
                              new_shape_groups)

    def clip_preprocess(self, target_im):
        model, preprocess = clip.load(self.saliency_clip_model, device=self.device, jit=False)
        model.eval().to(self.device)
        data_transforms = transforms.Compose([
            preprocess.transforms[-1],
        ])
        return data_transforms(target_im).to(self.device)

    def dino_attn(self):
        patch_size = 8  # dino hyperparameter
        threshold = 0.6

        # for dino model
        mean_imagenet = torch.Tensor([0.485, 0.456, 0.406])[None, :, None, None].to(self.device)
        std_imagenet = torch.Tensor([0.229, 0.224, 0.225])[None, :, None, None].to(self.device)
        totens = transforms.Compose([
            transforms.Resize((self.canvas_height, self.canvas_width)),
            transforms.ToTensor()
        ])

        dino_model = torch.hub.load('facebookresearch/dino:main', 'dino_vits8').eval().to(self.device)

        self.main_im = Image.open(self.target_path).convert("RGB")
        main_im_tensor = totens(self.main_im).to(self.device)
        img = (main_im_tensor.unsqueeze(0) - mean_imagenet) / std_imagenet
        w_featmap = img.shape[-2] // patch_size
        h_featmap = img.shape[-1] // patch_size

        with torch.no_grad():
            attn = dino_model.get_last_selfattention(img).detach().cpu()[0]

        nh = attn.shape[0]
        attn = attn[:, 0, 1:].reshape(nh, -1)
        val, idx = torch.sort(attn)
        val /= torch.sum(val, dim=1, keepdim=True)
        cumval = torch.cumsum(val, dim=1)
        th_attn = cumval > (1 - threshold)
        idx2 = torch.method_cfgort(idx)
        for head in range(nh):
            th_attn[head] = th_attn[head][idx2[head]]
        th_attn = th_attn.reshape(nh, w_featmap, h_featmap).float()
        th_attn = nn.functional.interpolate(th_attn.unsqueeze(0), scale_factor=patch_size, mode="nearest")[0].cpu()

        attn = attn.reshape(nh, w_featmap, h_featmap).float()
        attn = nn.functional.interpolate(attn.unsqueeze(0), scale_factor=patch_size, mode="nearest")[0].cpu()

        return attn

    def clip_attn(self):
        model, preprocess = clip.load(self.saliency_clip_model, device=self.device, jit=False)
        model.eval().to(self.device)

        if "RN" in self.saliency_clip_model:
            text_input = clip.tokenize([self.text_target]).to(self.device)
            saliency_layer = "layer4"
            attn_map = gradCAM(
                model.visual,
                self.image2clip_input,
                model.encode_text(text_input).float(),
                getattr(model.visual, saliency_layer)
            )
            attn_map = attn_map.squeeze().detach().cpu().numpy()
            attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min())
        else:  # ViT
            attn_map = interpret(self.image2clip_input, model, device=self.device)

        del model
        return attn_map

    def set_attention_map(self):
        assert self.saliency_model in ["dino", "clip"]
        if self.saliency_model == "dino":
            return self.dino_attn()
        elif self.saliency_model == "clip":
            return self.clip_attn()

    def softmax(self, x, tau=0.2):
        e_x = np.exp(x / tau)
        return e_x / e_x.sum()

    def set_inds_clip(self):
        attn_map = (self.attention_map - self.attention_map.min()) / (
                self.attention_map.max() - self.attention_map.min())
        if self.xdog_intersec:
            xdog = XDoG(k=10)
            im_xdog = xdog(self.image2clip_input[0].permute(1, 2, 0).cpu().numpy())
            intersec_map = (1 - im_xdog) * attn_map
            attn_map = intersec_map
        if self.mask_object_attention:
            attn_map = attn_map * self.mask[0, 0].cpu().numpy()

        attn_map_soft = np.copy(attn_map)
        attn_map_soft[attn_map > 0] = self.softmax(attn_map[attn_map > 0], tau=self.softmax_temp)

        k = self.num_stages * self.num_paths
        self.inds = np.random.choice(range(attn_map.flatten().shape[0]), size=k, replace=False,
                                     p=attn_map_soft.flatten())
        self.inds = np.array(np.unravel_index(self.inds, attn_map.shape)).T

        self.inds_normalised = np.zeros(self.inds.shape)
        self.inds_normalised[:, 0] = self.inds[:, 1] / self.canvas_width
        self.inds_normalised[:, 1] = self.inds[:, 0] / self.canvas_height
        self.inds_normalised = self.inds_normalised.tolist()
        return attn_map_soft

    def set_inds_dino(self):
        k = max(3, (self.num_stages * self.num_paths) // 6 + 1)  # sample top 3 three points from each attention head
        num_heads = self.attention_map.shape[0]
        self.inds = np.zeros((k * num_heads, 2))
        # "thresh" is used for visualisaiton purposes only
        thresh = torch.zeros(num_heads + 1, self.attention_map.shape[1], self.attention_map.shape[2])
        softmax = nn.Softmax(dim=1)
        for i in range(num_heads):
            # replace "self.attention_map[i]" with "self.attention_map" to get the highest values among
            # all heads. 
            topk, indices = np.unique(self.attention_map[i].numpy(), return_index=True)
            topk = topk[::-1][:k]
            cur_attn_map = self.attention_map[i].numpy()
            # prob function for uniform sampling
            prob = cur_attn_map.flatten()
            prob[prob > topk[-1]] = 1
            prob[prob <= topk[-1]] = 0
            prob = prob / prob.sum()
            thresh[i] = torch.Tensor(prob.reshape(cur_attn_map.shape))

            # choose k pixels from each head            
            inds = np.random.choice(range(cur_attn_map.flatten().shape[0]), size=k, replace=False, p=prob)
            inds = np.unravel_index(inds, cur_attn_map.shape)
            self.inds[i * k: i * k + k, 0] = inds[0]
            self.inds[i * k: i * k + k, 1] = inds[1]

        # for visualisaiton
        sum_attn = self.attention_map.sum(0).numpy()
        mask = np.zeros(sum_attn.shape)
        mask[thresh[:-1].sum(0) > 0] = 1
        sum_attn = sum_attn * mask
        sum_attn = sum_attn / sum_attn.sum()
        thresh[-1] = torch.Tensor(sum_attn)

        # sample num_paths from the chosen pixels.
        prob_sum = sum_attn[self.inds[:, 0].astype(np.int), self.inds[:, 1].astype(np.int)]
        prob_sum = prob_sum / prob_sum.sum()
        new_inds = []
        for i in range(self.num_stages):
            new_inds.extend(np.random.choice(range(self.inds.shape[0]), size=self.num_paths, replace=False, p=prob_sum))
        self.inds = self.inds[new_inds]

        self.inds_normalised = np.zeros(self.inds.shape)
        self.inds_normalised[:, 0] = self.inds[:, 1] / self.canvas_width
        self.inds_normalised[:, 1] = self.inds[:, 0] / self.canvas_height
        self.inds_normalised = self.inds_normalised.tolist()
        return thresh

    def set_attention_threshold_map(self):
        assert self.saliency_model in ["dino", "clip"]
        if self.saliency_model == "dino":
            return self.set_inds_dino()
        elif self.saliency_model == "clip":
            return self.set_inds_clip()

    def get_attn(self):
        return self.attention_map

    def get_thresh(self):
        return self.thresh

    def get_inds(self):
        return self.inds

    def get_mask(self):
        return self.mask

    def set_random_noise(self, epoch):
        if epoch % self.args.save_step == 0:
            self.add_random_noise = False
        else:
            self.add_random_noise = "noise" in self.args.augemntations


class PainterOptimizer:
    def __init__(self, args, renderer):
        self.renderer = renderer
        self.points_lr = args.lr
        self.color_lr = args.color_lr
        self.args = args
        self.optim_color = args.force_sparse
        self.width_optim = args.width_optim
        self.width_optim_global = args.width_optim
        self.width_lr = args.width_lr
        self.optimize_points = args.optimize_points
        self.optimize_points_global = args.optimize_points
        self.points_optim = None
        self.width_optimizer = None
        self.mlp_width_weights_path = args.mlp_width_weights_path
        self.mlp_points_weights_path = args.mlp_points_weights_path
        self.load_points_opt_weights = args.load_points_opt_weights
        # self.only_width = args.only_width

    def turn_off_points_optim(self):
        self.optimize_points = False

    def switch_opt(self):
        self.width_optim = not self.width_optim
        self.optimize_points = not self.optimize_points

    def init_optimizers(self):
        if self.width_optim:
            points_params, width_params = self.renderer.parameters()
            self.width_optimizer = torch.optim.Adam(width_params, lr=self.width_lr)
            if self.mlp_width_weights_path != "none":
                checkpoint = torch.load(self.mlp_width_weights_path)
                self.width_optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
                print("optimizer checkpoint loaded from ", self.mlp_width_weights_path)
        else:
            points_params = self.renderer.parameters()

        if self.optimize_points:
            self.points_optim = torch.optim.Adam(points_params, lr=self.points_lr)
            if self.mlp_points_weights_path != "none" and self.load_points_opt_weights:
                checkpoint = torch.load(self.mlp_points_weights_path)
                self.points_optim.load_state_dict(checkpoint['optimizer_state_dict'])
                print("optimizer checkpoint loaded from ", self.mlp_points_weights_path)

        if self.optim_color:
            self.color_optim = torch.optim.Adam(self.renderer.set_color_parameters(), lr=self.color_lr)

    def zero_grad_(self):
        if self.optimize_points:
            self.points_optim.zero_grad()
        if self.width_optim:
            self.width_optimizer.zero_grad()
        if self.optim_color:
            self.color_optim.zero_grad()

    def step_(self):
        if self.optimize_points:
            self.points_optim.step()
        if self.width_optim:
            self.width_optimizer.step()
        if self.optim_color:
            self.color_optim.step()

    def get_lr(self, optim="points"):
        if optim == "points" and self.optimize_points_global:
            return self.points_optim.param_groups[0]['lr']
        if optim == "width" and self.width_optim_global:
            return self.width_optimizer.param_groups[0]['lr']
        else:
            return None

    def get_points_optim(self):
        return self.points_optim

    def get_width_optim(self):
        return self.width_optimizer


class LinearDecayLR:

    def __init__(self, decay_every, decay_ratio):
        self.decay_every = decay_every
        self.decay_ratio = decay_ratio

    def __call__(self, n):
        decay_time = n // self.decay_every
        decay_step = n % self.decay_every
        lr_s = self.decay_ratio ** decay_time
        lr_e = self.decay_ratio ** (decay_time + 1)
        r = decay_step / self.decay_every
        lr = lr_s * (1 - r) + lr_e * r
        return lr


def interpret(image, clip_model, device):
    # virtual forward to get attention map
    images = image.repeat(1, 1, 1, 1)
    _ = clip_model.encode_image(images)  # ensure `attn_probs` in attention is not empty
    clip_model.zero_grad()

    image_attn_blocks = list(dict(clip_model.visual.transformer.resblocks.named_children()).values())
    # create R to store attention map
    num_tokens = image_attn_blocks[0].attn_probs.shape[-1]
    R = torch.eye(num_tokens, num_tokens, dtype=image_attn_blocks[0].attn_probs.dtype).to(device)
    R = R.unsqueeze(0).expand(1, num_tokens, num_tokens)

    cams = []
    for i, blk in enumerate(image_attn_blocks):  # 12 attention blocks
        cam = blk.attn_probs.detach()  # attn_probs shape: [12, 50, 50]
        # each patch is 7x7 so we have 49 pixels + 1 for positional encoding
        cam = cam.reshape(1, -1, cam.shape[-1], cam.shape[-1])
        cam = cam.clamp(min=0)
        cam = cam.clamp(min=0).mean(dim=1)  # mean of the 12 something
        cams.append(cam)
        R = R + torch.bmm(cam, R)

    cams_avg = torch.cat(cams)  # [12, 50, 50]
    cams_avg = cams_avg[:, 0, 1:]  # [12, 49]
    image_relevance = cams_avg.mean(dim=0).unsqueeze(0)  # [1, 49]
    image_relevance = image_relevance.reshape(1, 1, 7, 7)  # [1, 1, 7, 7]
    # interpolate: [1, 1, 7, 7] -> [1, 3, 224, 224]
    image_relevance = torch.nn.functional.interpolate(image_relevance, size=224, mode='bicubic')
    image_relevance = image_relevance.reshape(224, 224).data.cpu().numpy().astype(np.float32)
    # normalize the tensor to [0, 1]
    image_relevance = (image_relevance - image_relevance.min()) / (image_relevance.max() - image_relevance.min())
    return image_relevance


class MLP(nn.Module):
    def __init__(self, num_strokes, num_cp, width_optim=False):
        super().__init__()
        outdim = 1000
        self.width_optim = width_optim
        self.layers_points = nn.Sequential(
            nn.Flatten(),
            nn.Linear(num_strokes * num_cp * 2, outdim),
            nn.SELU(inplace=True),
            nn.Linear(outdim, outdim),
            nn.SELU(inplace=True),
            nn.Linear(outdim, num_strokes * num_cp * 2),
        )

    def forward(self, x, widths=None):
        '''Forward pass'''
        deltas = self.layers_points(x)
        # if self.width_optim:
        #     return x.flatten() + 0.1 * deltas, self.layers_width(widths)
        return x.flatten() + 0.1 * deltas


class WidthMLP(nn.Module):
    def __init__(self, num_strokes, num_cp, width_optim=False):
        super().__init__()
        outdim = 1000
        self.width_optim = width_optim

        self.layers_width = nn.Sequential(
            nn.Linear(num_strokes, outdim),
            nn.SELU(inplace=True),
            nn.Linear(outdim, outdim),
            nn.SELU(inplace=True),
            nn.Linear(outdim, num_strokes),
            nn.Sigmoid()
        )

    def forward(self, widths=None):
        '''Forward pass'''
        return self.layers_width(widths)


def init_weights(m):
    if isinstance(m, nn.Linear):
        torch.nn.init.xavier_uniform(m.weight)
        m.bias.data.fill_(0.01)