File size: 7,105 Bytes
966ae59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import numpy as np
import torch

from skimage import io, transform, color
from torch.utils.data import Dataset


class SalObjDataset(Dataset):
    def __init__(self, imgs_list, lbl_name_list, transform=None):
        self.imgs_list = imgs_list
        self.label_name_list = lbl_name_list
        self.transform = transform

    def __len__(self):
        return len(self.imgs_list)

    def __getitem__(self, idx):

        image = np.array(self.imgs_list[idx])
        imidx = np.array([idx])

        if (0 == len(self.label_name_list)):
            label_3 = np.zeros(image.shape)
        else:
            label_3 = io.imread(self.label_name_list[idx])

        label = np.zeros(label_3.shape[0:2])
        if (3 == len(label_3.shape)):
            label = label_3[:, :, 0]
        elif (2 == len(label_3.shape)):
            label = label_3

        if (3 == len(image.shape) and 2 == len(label.shape)):
            label = label[:, :, np.newaxis]
        elif (2 == len(image.shape) and 2 == len(label.shape)):
            image = image[:, :, np.newaxis]
            label = label[:, :, np.newaxis]

        sample = {'imidx': imidx, 'image': image, 'label': label}

        if self.transform:
            sample = self.transform(sample)

        return sample['image']


class RescaleT(object):

    def __init__(self, output_size):
        assert isinstance(output_size, (int, tuple))
        self.output_size = output_size

    def __call__(self, sample):
        imidx, image, label = sample['imidx'], sample['image'], sample['label']

        h, w = image.shape[:2]

        if isinstance(self.output_size, int):
            if h > w:
                new_h, new_w = self.output_size * h / w, self.output_size
            else:
                new_h, new_w = self.output_size, self.output_size * w / h
        else:
            new_h, new_w = self.output_size

        new_h, new_w = int(new_h), int(new_w)

        # #resize the image to new_h x new_w and convert image from range [0,255] to [0,1]
        # img = transform.resize(image,(new_h,new_w),mode='constant')
        # lbl = transform.resize(label,(new_h,new_w),mode='constant', order=0, preserve_range=True)

        img = transform.resize(image, (self.output_size, self.output_size), mode='constant')
        lbl = transform.resize(label, (self.output_size, self.output_size), mode='constant', order=0,
                               preserve_range=True)

        return {'imidx': imidx, 'image': img, 'label': lbl}


class ToTensorLab(object):
    """Convert ndarrays in sample to Tensors."""

    def __init__(self, flag=0):
        self.flag = flag

    def __call__(self, sample):

        imidx, image, label = sample['imidx'], sample['image'], sample['label']

        tmpLbl = np.zeros(label.shape)

        if (np.max(label) < 1e-6):
            label = label
        else:
            label = label / np.max(label)

        # change the color space
        if self.flag == 2:  # with rgb and Lab colors
            tmpImg = np.zeros((image.shape[0], image.shape[1], 6))
            tmpImgt = np.zeros((image.shape[0], image.shape[1], 3))
            if image.shape[2] == 1:
                tmpImgt[:, :, 0] = image[:, :, 0]
                tmpImgt[:, :, 1] = image[:, :, 0]
                tmpImgt[:, :, 2] = image[:, :, 0]
            else:
                tmpImgt = image
            tmpImgtl = color.rgb2lab(tmpImgt)

            # nomalize image to range [0,1]
            tmpImg[:, :, 0] = (tmpImgt[:, :, 0] - np.min(tmpImgt[:, :, 0])) / (
                    np.max(tmpImgt[:, :, 0]) - np.min(tmpImgt[:, :, 0]))
            tmpImg[:, :, 1] = (tmpImgt[:, :, 1] - np.min(tmpImgt[:, :, 1])) / (
                    np.max(tmpImgt[:, :, 1]) - np.min(tmpImgt[:, :, 1]))
            tmpImg[:, :, 2] = (tmpImgt[:, :, 2] - np.min(tmpImgt[:, :, 2])) / (
                    np.max(tmpImgt[:, :, 2]) - np.min(tmpImgt[:, :, 2]))
            tmpImg[:, :, 3] = (tmpImgtl[:, :, 0] - np.min(tmpImgtl[:, :, 0])) / (
                    np.max(tmpImgtl[:, :, 0]) - np.min(tmpImgtl[:, :, 0]))
            tmpImg[:, :, 4] = (tmpImgtl[:, :, 1] - np.min(tmpImgtl[:, :, 1])) / (
                    np.max(tmpImgtl[:, :, 1]) - np.min(tmpImgtl[:, :, 1]))
            tmpImg[:, :, 5] = (tmpImgtl[:, :, 2] - np.min(tmpImgtl[:, :, 2])) / (
                    np.max(tmpImgtl[:, :, 2]) - np.min(tmpImgtl[:, :, 2]))

            # tmpImg = tmpImg/(np.max(tmpImg)-np.min(tmpImg))

            tmpImg[:, :, 0] = (tmpImg[:, :, 0] - np.mean(tmpImg[:, :, 0])) / np.std(tmpImg[:, :, 0])
            tmpImg[:, :, 1] = (tmpImg[:, :, 1] - np.mean(tmpImg[:, :, 1])) / np.std(tmpImg[:, :, 1])
            tmpImg[:, :, 2] = (tmpImg[:, :, 2] - np.mean(tmpImg[:, :, 2])) / np.std(tmpImg[:, :, 2])
            tmpImg[:, :, 3] = (tmpImg[:, :, 3] - np.mean(tmpImg[:, :, 3])) / np.std(tmpImg[:, :, 3])
            tmpImg[:, :, 4] = (tmpImg[:, :, 4] - np.mean(tmpImg[:, :, 4])) / np.std(tmpImg[:, :, 4])
            tmpImg[:, :, 5] = (tmpImg[:, :, 5] - np.mean(tmpImg[:, :, 5])) / np.std(tmpImg[:, :, 5])

        elif self.flag == 1:  # with Lab color
            tmpImg = np.zeros((image.shape[0], image.shape[1], 3))

            if image.shape[2] == 1:
                tmpImg[:, :, 0] = image[:, :, 0]
                tmpImg[:, :, 1] = image[:, :, 0]
                tmpImg[:, :, 2] = image[:, :, 0]
            else:
                tmpImg = image

            tmpImg = color.rgb2lab(tmpImg)

            # tmpImg = tmpImg/(np.max(tmpImg)-np.min(tmpImg))

            tmpImg[:, :, 0] = (tmpImg[:, :, 0] - np.min(tmpImg[:, :, 0])) / (
                    np.max(tmpImg[:, :, 0]) - np.min(tmpImg[:, :, 0]))
            tmpImg[:, :, 1] = (tmpImg[:, :, 1] - np.min(tmpImg[:, :, 1])) / (
                    np.max(tmpImg[:, :, 1]) - np.min(tmpImg[:, :, 1]))
            tmpImg[:, :, 2] = (tmpImg[:, :, 2] - np.min(tmpImg[:, :, 2])) / (
                    np.max(tmpImg[:, :, 2]) - np.min(tmpImg[:, :, 2]))

            tmpImg[:, :, 0] = (tmpImg[:, :, 0] - np.mean(tmpImg[:, :, 0])) / np.std(tmpImg[:, :, 0])
            tmpImg[:, :, 1] = (tmpImg[:, :, 1] - np.mean(tmpImg[:, :, 1])) / np.std(tmpImg[:, :, 1])
            tmpImg[:, :, 2] = (tmpImg[:, :, 2] - np.mean(tmpImg[:, :, 2])) / np.std(tmpImg[:, :, 2])

        else:  # with rgb color
            tmpImg = np.zeros((image.shape[0], image.shape[1], 3))
            image = image / np.max(image)
            if image.shape[2] == 1:
                tmpImg[:, :, 0] = (image[:, :, 0] - 0.485) / 0.229
                tmpImg[:, :, 1] = (image[:, :, 0] - 0.485) / 0.229
                tmpImg[:, :, 2] = (image[:, :, 0] - 0.485) / 0.229
            else:
                tmpImg[:, :, 0] = (image[:, :, 0] - 0.485) / 0.229
                tmpImg[:, :, 1] = (image[:, :, 1] - 0.456) / 0.224
                tmpImg[:, :, 2] = (image[:, :, 2] - 0.406) / 0.225

        tmpLbl[:, :, 0] = label[:, :, 0]

        tmpImg = tmpImg.transpose((2, 0, 1))
        tmpLbl = label.transpose((2, 0, 1))

        return {'imidx': torch.from_numpy(imidx), 'image': torch.from_numpy(tmpImg), 'label': torch.from_numpy(tmpLbl)}