Spaces:
Running
Running
File size: 14,270 Bytes
966ae59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import pathlib
import random
import omegaconf
import pydiffvg
import numpy as np
import torch
from torch.optim.lr_scheduler import LambdaLR
from torchvision import transforms
from pytorch_svgrender.diffvg_warp import DiffVGState
from pytorch_svgrender.libs.modules.edge_map.DoG import XDoG
from .grad_cam import gradCAM
from . import modified_clip as clip
class Painter(DiffVGState):
def __init__(
self,
method_cfg: omegaconf.DictConfig,
diffvg_cfg: omegaconf.DictConfig,
num_strokes: int = 4,
canvas_size: int = 224,
device=None,
target_im=None,
mask=None
):
super(Painter, self).__init__(device, print_timing=diffvg_cfg.print_timing,
canvas_width=canvas_size, canvas_height=canvas_size)
self.args = method_cfg
self.num_paths = num_strokes
self.num_segments = method_cfg.num_segments
self.width = method_cfg.width
self.control_points_per_seg = method_cfg.control_points_per_seg
self.opacity_optim = method_cfg.force_sparse
self.num_stages = method_cfg.num_stages
self.noise_thresh = method_cfg.noise_thresh
self.softmax_temp = method_cfg.softmax_temp
self.color_vars_threshold = method_cfg.color_vars_threshold
self.path_svg = method_cfg.path_svg
self.strokes_per_stage = self.num_paths
self.optimize_flag = []
# attention related for strokes initialisation
self.attention_init = method_cfg.attention_init
self.saliency_model = method_cfg.saliency_model
self.xdog_intersec = method_cfg.xdog_intersec
self.mask_object = method_cfg.mask_object_attention
self.text_target = method_cfg.text_target # for clip gradients
self.saliency_clip_model = method_cfg.saliency_clip_model
self.image2clip_input = self.clip_preprocess(target_im)
self.mask = mask
self.attention_map = self.set_attention_map() if self.attention_init else None
self.thresh = self.set_attention_threshold_map() if self.attention_init else None
self.strokes_counter = 0 # counts the number of calls to "get_path"
self.epoch = 0
self.final_epoch = method_cfg.num_iter - 1
def init_image(self, stage=0):
if stage > 0:
# Noting: if multi stages training than add new strokes on existing ones
# don't optimize on previous strokes
self.optimize_flag = [False for i in range(len(self.shapes))]
for i in range(self.strokes_per_stage):
stroke_color = torch.tensor([0.0, 0.0, 0.0, 1.0])
path = self.get_path()
self.shapes.append(path)
path_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor([len(self.shapes) - 1]),
fill_color=None,
stroke_color=stroke_color)
self.shape_groups.append(path_group)
self.optimize_flag.append(True)
else:
num_paths_exists = 0
if self.path_svg is not None and pathlib.Path(self.path_svg).exists():
print(f"-> init svg from `{self.path_svg}` ...")
self.canvas_width, self.canvas_height, self.shapes, self.shape_groups = self.load_svg(self.path_svg)
# if you want to add more strokes to existing ones and optimize on all of them
num_paths_exists = len(self.shapes)
for i in range(num_paths_exists, self.num_paths):
stroke_color = torch.tensor([0.0, 0.0, 0.0, 1.0])
path = self.get_path()
self.shapes.append(path)
path_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor([len(self.shapes) - 1]),
fill_color=None,
stroke_color=stroke_color)
self.shape_groups.append(path_group)
self.optimize_flag = [True for i in range(len(self.shapes))]
img = self.render_warp()
img = img[:, :, 3:4] * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device=self.device) * (
1 - img[:, :, 3:4])
img = img[:, :, :3]
# Convert img from HWC to NCHW
img = img.unsqueeze(0)
img = img.permute(0, 3, 1, 2).to(self.device) # NHWC -> NCHW
return img
def get_image(self):
img = self.render_warp()
opacity = img[:, :, 3:4]
img = opacity * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device=self.device) * (1 - opacity)
img = img[:, :, :3]
# Convert img from HWC to NCHW
img = img.unsqueeze(0)
img = img.permute(0, 3, 1, 2).to(self.device) # NHWC -> NCHW
return img
def get_path(self):
points = []
self.num_control_points = torch.zeros(self.num_segments, dtype=torch.int32) + (self.control_points_per_seg - 2)
p0 = self.inds_normalised[self.strokes_counter] if self.attention_init else (random.random(), random.random())
points.append(p0)
for j in range(self.num_segments):
radius = 0.05
for k in range(self.control_points_per_seg - 1):
p1 = (p0[0] + radius * (random.random() - 0.5), p0[1] + radius * (random.random() - 0.5))
points.append(p1)
p0 = p1
points = torch.tensor(points).to(self.device)
points[:, 0] *= self.canvas_width
points[:, 1] *= self.canvas_height
path = pydiffvg.Path(num_control_points=self.num_control_points,
points=points,
stroke_width=torch.tensor(self.width),
is_closed=False)
self.strokes_counter += 1
return path
def render_warp(self):
if self.opacity_optim:
for group in self.shape_groups:
group.stroke_color.data[:3].clamp_(0., 0.) # to force black stroke
group.stroke_color.data[-1].clamp_(0., 1.) # opacity
# group.stroke_color.data[-1] = (group.stroke_color.data[-1] >= self.color_vars_threshold).float()
_render = pydiffvg.RenderFunction.apply
scene_args = pydiffvg.RenderFunction.serialize_scene(
self.canvas_width, self.canvas_height, self.shapes, self.shape_groups
)
img = _render(self.canvas_width, # width
self.canvas_height, # height
2, # num_samples_x
2, # num_samples_y
0, # seed
None,
*scene_args)
return img
def set_point_parameters(self):
self.point_vars = []
# storkes' location optimization
for i, path in enumerate(self.shapes):
if self.optimize_flag[i]:
path.points.requires_grad = True
self.point_vars.append(path.points)
def get_point_parameters(self):
return self.point_vars
def set_color_parameters(self):
# for storkes' color optimization (opacity)
self.color_vars = []
for i, group in enumerate(self.shape_groups):
if self.optimize_flag[i]:
group.stroke_color.requires_grad = True
self.color_vars.append(group.stroke_color)
def get_color_parameters(self):
return self.color_vars
def save_svg(self, output_dir: str, name: str):
pydiffvg.save_svg(f'{output_dir}/{name}.svg',
self.canvas_width, self.canvas_height, self.shapes, self.shape_groups)
def clip_preprocess(self, target_im):
model, preprocess = clip.load(self.saliency_clip_model, device=self.device, jit=False)
model.eval().to(self.device)
data_transforms = transforms.Compose([
preprocess.transforms[-1],
])
return data_transforms(target_im).to(self.device)
def clip_attn(self):
model, preprocess = clip.load(self.saliency_clip_model, device=self.device, jit=False)
model.eval().to(self.device)
if "RN" in self.saliency_clip_model:
text_input = clip.tokenize([self.text_target]).to(self.device)
saliency_layer = "layer4"
attn_map = gradCAM(
model.visual,
self.image2clip_input,
model.encode_text(text_input).float(),
getattr(model.visual, saliency_layer)
)
attn_map = attn_map.squeeze().detach().cpu().numpy()
attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min())
else: # ViT
attn_map = interpret(self.image2clip_input, model, self.device)
del model
return attn_map
def set_attention_map(self):
assert self.saliency_model in ["clip"]
if self.saliency_model == "clip":
return self.clip_attn()
def softmax(self, x, tau=0.2):
e_x = np.exp(x / tau)
return e_x / e_x.sum()
def set_inds_clip(self):
attn_map = (self.attention_map - self.attention_map.min()) / \
(self.attention_map.max() - self.attention_map.min())
if self.xdog_intersec:
xdog = XDoG(k=10)
im_xdog = xdog(self.image2clip_input[0].permute(1, 2, 0).cpu().numpy())
intersec_map = (1 - im_xdog) * attn_map
attn_map = intersec_map
attn_map_soft = np.copy(attn_map)
attn_map_soft[attn_map > 0] = self.softmax(attn_map[attn_map > 0], tau=self.softmax_temp)
k = self.num_stages * self.num_paths
self.inds = np.random.choice(range(attn_map.flatten().shape[0]), size=k, replace=False,
p=attn_map_soft.flatten())
self.inds = np.array(np.unravel_index(self.inds, attn_map.shape)).T
self.inds_normalised = np.zeros(self.inds.shape)
self.inds_normalised[:, 0] = self.inds[:, 1] / self.canvas_width
self.inds_normalised[:, 1] = self.inds[:, 0] / self.canvas_height
self.inds_normalised = self.inds_normalised.tolist()
return attn_map_soft
def set_attention_threshold_map(self):
assert self.saliency_model in ["clip"]
if self.saliency_model == "clip":
return self.set_inds_clip()
def get_attn(self):
return self.attention_map
def get_thresh(self):
return self.thresh
def get_inds(self):
return self.inds
def get_mask(self):
return self.mask
class PainterOptimizer:
def __init__(self, renderer: Painter, num_iter: int, points_lr: float, force_sparse: bool, color_lr: float):
self.renderer = renderer
self.num_iter = num_iter
self.points_lr = points_lr
self.color_lr = color_lr
self.optim_color = force_sparse
self.points_optimizer, self.color_optimizer = None, None
self.scheduler = None
def init_optimizers(self):
# optimizers
self.renderer.set_point_parameters()
self.points_optimizer = torch.optim.Adam(self.renderer.get_point_parameters(), lr=self.points_lr)
if self.optim_color:
self.renderer.set_color_parameters()
self.color_optimizer = torch.optim.Adam(self.renderer.get_color_parameters(), lr=self.color_lr)
# lr schedule
lr_lambda_fn = LinearDecayLR(self.num_iter, 0.4)
self.scheduler = LambdaLR(self.points_optimizer, lr_lambda=lr_lambda_fn, last_epoch=-1)
def update_lr(self):
self.scheduler.step()
def zero_grad_(self):
self.points_optimizer.zero_grad()
if self.optim_color:
self.color_optimizer.zero_grad()
def step_(self):
self.points_optimizer.step()
if self.optim_color:
self.color_optimizer.step()
def get_lr(self):
return self.points_optimizer.param_groups[0]['lr']
class LinearDecayLR:
def __init__(self, decay_every, decay_ratio):
self.decay_every = decay_every
self.decay_ratio = decay_ratio
def __call__(self, n):
decay_time = n // self.decay_every
decay_step = n % self.decay_every
lr_s = self.decay_ratio ** decay_time
lr_e = self.decay_ratio ** (decay_time + 1)
r = decay_step / self.decay_every
lr = lr_s * (1 - r) + lr_e * r
return lr
def interpret(image, clip_model, device):
# virtual forward to get attention map
images = image.repeat(1, 1, 1, 1)
_ = clip_model.encode_image(images) # ensure `attn_probs` in attention is not empty
clip_model.zero_grad()
image_attn_blocks = list(dict(clip_model.visual.transformer.resblocks.named_children()).values())
# create R to store attention map
num_tokens = image_attn_blocks[0].attn_probs.shape[-1]
R = torch.eye(num_tokens, num_tokens, dtype=image_attn_blocks[0].attn_probs.dtype).to(device)
R = R.unsqueeze(0).expand(1, num_tokens, num_tokens)
cams = []
for i, blk in enumerate(image_attn_blocks): # 12 attention blocks
cam = blk.attn_probs.detach() # attn_probs shape: [12, 50, 50]
# each patch is 7x7 so we have 49 pixels + 1 for positional encoding
cam = cam.reshape(1, -1, cam.shape[-1], cam.shape[-1])
cam = cam.clamp(min=0)
cam = cam.clamp(min=0).mean(dim=1) # mean of the 12 something
cams.append(cam)
R = R + torch.bmm(cam, R)
cams_avg = torch.cat(cams) # [12, 50, 50]
cams_avg = cams_avg[:, 0, 1:] # [12, 49]
image_relevance = cams_avg.mean(dim=0).unsqueeze(0) # [1, 49]
image_relevance = image_relevance.reshape(1, 1, 7, 7) # [1, 1, 7, 7]
# interpolate: [1, 1, 7, 7] -> [1, 3, 224, 224]
image_relevance = torch.nn.functional.interpolate(image_relevance, size=224, mode='bicubic')
image_relevance = image_relevance.reshape(224, 224).data.cpu().numpy().astype(np.float32)
# normalize the tensor to [0, 1]
image_relevance = (image_relevance - image_relevance.min()) / (image_relevance.max() - image_relevance.min())
return image_relevance
|