File size: 14,270 Bytes
966ae59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import pathlib
import random

import omegaconf
import pydiffvg
import numpy as np
import torch
from torch.optim.lr_scheduler import LambdaLR
from torchvision import transforms

from pytorch_svgrender.diffvg_warp import DiffVGState
from pytorch_svgrender.libs.modules.edge_map.DoG import XDoG
from .grad_cam import gradCAM
from . import modified_clip as clip


class Painter(DiffVGState):

    def __init__(
            self,
            method_cfg: omegaconf.DictConfig,
            diffvg_cfg: omegaconf.DictConfig,
            num_strokes: int = 4,
            canvas_size: int = 224,
            device=None,
            target_im=None,
            mask=None
    ):
        super(Painter, self).__init__(device, print_timing=diffvg_cfg.print_timing,
                                      canvas_width=canvas_size, canvas_height=canvas_size)

        self.args = method_cfg
        self.num_paths = num_strokes
        self.num_segments = method_cfg.num_segments
        self.width = method_cfg.width
        self.control_points_per_seg = method_cfg.control_points_per_seg
        self.opacity_optim = method_cfg.force_sparse
        self.num_stages = method_cfg.num_stages
        self.noise_thresh = method_cfg.noise_thresh
        self.softmax_temp = method_cfg.softmax_temp

        self.color_vars_threshold = method_cfg.color_vars_threshold

        self.path_svg = method_cfg.path_svg
        self.strokes_per_stage = self.num_paths
        self.optimize_flag = []

        # attention related for strokes initialisation
        self.attention_init = method_cfg.attention_init
        self.saliency_model = method_cfg.saliency_model
        self.xdog_intersec = method_cfg.xdog_intersec
        self.mask_object = method_cfg.mask_object_attention

        self.text_target = method_cfg.text_target  # for clip gradients
        self.saliency_clip_model = method_cfg.saliency_clip_model
        self.image2clip_input = self.clip_preprocess(target_im)
        self.mask = mask
        self.attention_map = self.set_attention_map() if self.attention_init else None

        self.thresh = self.set_attention_threshold_map() if self.attention_init else None
        self.strokes_counter = 0  # counts the number of calls to "get_path"
        self.epoch = 0
        self.final_epoch = method_cfg.num_iter - 1

    def init_image(self, stage=0):
        if stage > 0:
            # Noting: if multi stages training than add new strokes on existing ones
            # don't optimize on previous strokes
            self.optimize_flag = [False for i in range(len(self.shapes))]
            for i in range(self.strokes_per_stage):
                stroke_color = torch.tensor([0.0, 0.0, 0.0, 1.0])
                path = self.get_path()
                self.shapes.append(path)
                path_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor([len(self.shapes) - 1]),
                                                 fill_color=None,
                                                 stroke_color=stroke_color)
                self.shape_groups.append(path_group)
                self.optimize_flag.append(True)
        else:
            num_paths_exists = 0
            if self.path_svg is not None and pathlib.Path(self.path_svg).exists():
                print(f"-> init svg from `{self.path_svg}` ...")

                self.canvas_width, self.canvas_height, self.shapes, self.shape_groups = self.load_svg(self.path_svg)
                # if you want to add more strokes to existing ones and optimize on all of them
                num_paths_exists = len(self.shapes)

            for i in range(num_paths_exists, self.num_paths):
                stroke_color = torch.tensor([0.0, 0.0, 0.0, 1.0])
                path = self.get_path()
                self.shapes.append(path)
                path_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor([len(self.shapes) - 1]),
                                                 fill_color=None,
                                                 stroke_color=stroke_color)
                self.shape_groups.append(path_group)
            self.optimize_flag = [True for i in range(len(self.shapes))]

        img = self.render_warp()
        img = img[:, :, 3:4] * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device=self.device) * (
                1 - img[:, :, 3:4])
        img = img[:, :, :3]
        # Convert img from HWC to NCHW
        img = img.unsqueeze(0)
        img = img.permute(0, 3, 1, 2).to(self.device)  # NHWC -> NCHW

        return img

    def get_image(self):
        img = self.render_warp()
        opacity = img[:, :, 3:4]
        img = opacity * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device=self.device) * (1 - opacity)
        img = img[:, :, :3]
        # Convert img from HWC to NCHW
        img = img.unsqueeze(0)
        img = img.permute(0, 3, 1, 2).to(self.device)  # NHWC -> NCHW
        return img

    def get_path(self):
        points = []
        self.num_control_points = torch.zeros(self.num_segments, dtype=torch.int32) + (self.control_points_per_seg - 2)
        p0 = self.inds_normalised[self.strokes_counter] if self.attention_init else (random.random(), random.random())
        points.append(p0)

        for j in range(self.num_segments):
            radius = 0.05
            for k in range(self.control_points_per_seg - 1):
                p1 = (p0[0] + radius * (random.random() - 0.5), p0[1] + radius * (random.random() - 0.5))
                points.append(p1)
                p0 = p1
        points = torch.tensor(points).to(self.device)
        points[:, 0] *= self.canvas_width
        points[:, 1] *= self.canvas_height

        path = pydiffvg.Path(num_control_points=self.num_control_points,
                             points=points,
                             stroke_width=torch.tensor(self.width),
                             is_closed=False)
        self.strokes_counter += 1
        return path

    def render_warp(self):
        if self.opacity_optim:
            for group in self.shape_groups:
                group.stroke_color.data[:3].clamp_(0., 0.)  # to force black stroke
                group.stroke_color.data[-1].clamp_(0., 1.)  # opacity
                # group.stroke_color.data[-1] = (group.stroke_color.data[-1] >= self.color_vars_threshold).float()

        _render = pydiffvg.RenderFunction.apply
        scene_args = pydiffvg.RenderFunction.serialize_scene(
            self.canvas_width, self.canvas_height, self.shapes, self.shape_groups
        )
        img = _render(self.canvas_width,  # width
                      self.canvas_height,  # height
                      2,  # num_samples_x
                      2,  # num_samples_y
                      0,  # seed
                      None,
                      *scene_args)
        return img

    def set_point_parameters(self):
        self.point_vars = []
        # storkes' location optimization
        for i, path in enumerate(self.shapes):
            if self.optimize_flag[i]:
                path.points.requires_grad = True
                self.point_vars.append(path.points)

    def get_point_parameters(self):
        return self.point_vars

    def set_color_parameters(self):
        # for storkes' color optimization (opacity)
        self.color_vars = []
        for i, group in enumerate(self.shape_groups):
            if self.optimize_flag[i]:
                group.stroke_color.requires_grad = True
                self.color_vars.append(group.stroke_color)

    def get_color_parameters(self):
        return self.color_vars

    def save_svg(self, output_dir: str, name: str):
        pydiffvg.save_svg(f'{output_dir}/{name}.svg',
                          self.canvas_width, self.canvas_height, self.shapes, self.shape_groups)

    def clip_preprocess(self, target_im):
        model, preprocess = clip.load(self.saliency_clip_model, device=self.device, jit=False)
        model.eval().to(self.device)
        data_transforms = transforms.Compose([
            preprocess.transforms[-1],
        ])
        return data_transforms(target_im).to(self.device)

    def clip_attn(self):
        model, preprocess = clip.load(self.saliency_clip_model, device=self.device, jit=False)
        model.eval().to(self.device)

        if "RN" in self.saliency_clip_model:
            text_input = clip.tokenize([self.text_target]).to(self.device)
            saliency_layer = "layer4"
            attn_map = gradCAM(
                model.visual,
                self.image2clip_input,
                model.encode_text(text_input).float(),
                getattr(model.visual, saliency_layer)
            )
            attn_map = attn_map.squeeze().detach().cpu().numpy()
            attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min())
        else:  # ViT
            attn_map = interpret(self.image2clip_input, model, self.device)

        del model
        return attn_map

    def set_attention_map(self):
        assert self.saliency_model in ["clip"]
        if self.saliency_model == "clip":
            return self.clip_attn()

    def softmax(self, x, tau=0.2):
        e_x = np.exp(x / tau)
        return e_x / e_x.sum()

    def set_inds_clip(self):
        attn_map = (self.attention_map - self.attention_map.min()) / \
                   (self.attention_map.max() - self.attention_map.min())
        if self.xdog_intersec:
            xdog = XDoG(k=10)
            im_xdog = xdog(self.image2clip_input[0].permute(1, 2, 0).cpu().numpy())
            intersec_map = (1 - im_xdog) * attn_map
            attn_map = intersec_map

        attn_map_soft = np.copy(attn_map)
        attn_map_soft[attn_map > 0] = self.softmax(attn_map[attn_map > 0], tau=self.softmax_temp)

        k = self.num_stages * self.num_paths
        self.inds = np.random.choice(range(attn_map.flatten().shape[0]), size=k, replace=False,
                                     p=attn_map_soft.flatten())
        self.inds = np.array(np.unravel_index(self.inds, attn_map.shape)).T

        self.inds_normalised = np.zeros(self.inds.shape)
        self.inds_normalised[:, 0] = self.inds[:, 1] / self.canvas_width
        self.inds_normalised[:, 1] = self.inds[:, 0] / self.canvas_height
        self.inds_normalised = self.inds_normalised.tolist()
        return attn_map_soft

    def set_attention_threshold_map(self):
        assert self.saliency_model in ["clip"]
        if self.saliency_model == "clip":
            return self.set_inds_clip()

    def get_attn(self):
        return self.attention_map

    def get_thresh(self):
        return self.thresh

    def get_inds(self):
        return self.inds

    def get_mask(self):
        return self.mask


class PainterOptimizer:

    def __init__(self, renderer: Painter, num_iter: int, points_lr: float, force_sparse: bool, color_lr: float):
        self.renderer = renderer
        self.num_iter = num_iter
        self.points_lr = points_lr
        self.color_lr = color_lr
        self.optim_color = force_sparse

        self.points_optimizer, self.color_optimizer = None, None
        self.scheduler = None

    def init_optimizers(self):
        # optimizers
        self.renderer.set_point_parameters()
        self.points_optimizer = torch.optim.Adam(self.renderer.get_point_parameters(), lr=self.points_lr)
        if self.optim_color:
            self.renderer.set_color_parameters()
            self.color_optimizer = torch.optim.Adam(self.renderer.get_color_parameters(), lr=self.color_lr)
        # lr schedule
        lr_lambda_fn = LinearDecayLR(self.num_iter, 0.4)
        self.scheduler = LambdaLR(self.points_optimizer, lr_lambda=lr_lambda_fn, last_epoch=-1)

    def update_lr(self):
        self.scheduler.step()

    def zero_grad_(self):
        self.points_optimizer.zero_grad()
        if self.optim_color:
            self.color_optimizer.zero_grad()

    def step_(self):
        self.points_optimizer.step()
        if self.optim_color:
            self.color_optimizer.step()

    def get_lr(self):
        return self.points_optimizer.param_groups[0]['lr']


class LinearDecayLR:

    def __init__(self, decay_every, decay_ratio):
        self.decay_every = decay_every
        self.decay_ratio = decay_ratio

    def __call__(self, n):
        decay_time = n // self.decay_every
        decay_step = n % self.decay_every
        lr_s = self.decay_ratio ** decay_time
        lr_e = self.decay_ratio ** (decay_time + 1)
        r = decay_step / self.decay_every
        lr = lr_s * (1 - r) + lr_e * r
        return lr


def interpret(image, clip_model, device):
    # virtual forward to get attention map
    images = image.repeat(1, 1, 1, 1)
    _ = clip_model.encode_image(images)  # ensure `attn_probs` in attention is not empty
    clip_model.zero_grad()

    image_attn_blocks = list(dict(clip_model.visual.transformer.resblocks.named_children()).values())
    # create R to store attention map
    num_tokens = image_attn_blocks[0].attn_probs.shape[-1]
    R = torch.eye(num_tokens, num_tokens, dtype=image_attn_blocks[0].attn_probs.dtype).to(device)
    R = R.unsqueeze(0).expand(1, num_tokens, num_tokens)

    cams = []
    for i, blk in enumerate(image_attn_blocks):  # 12 attention blocks
        cam = blk.attn_probs.detach()  # attn_probs shape: [12, 50, 50]
        # each patch is 7x7 so we have 49 pixels + 1 for positional encoding
        cam = cam.reshape(1, -1, cam.shape[-1], cam.shape[-1])
        cam = cam.clamp(min=0)
        cam = cam.clamp(min=0).mean(dim=1)  # mean of the 12 something
        cams.append(cam)
        R = R + torch.bmm(cam, R)

    cams_avg = torch.cat(cams)  # [12, 50, 50]
    cams_avg = cams_avg[:, 0, 1:]  # [12, 49]
    image_relevance = cams_avg.mean(dim=0).unsqueeze(0)  # [1, 49]
    image_relevance = image_relevance.reshape(1, 1, 7, 7)  # [1, 1, 7, 7]
    # interpolate: [1, 1, 7, 7] -> [1, 3, 224, 224]
    image_relevance = torch.nn.functional.interpolate(image_relevance, size=224, mode='bicubic')
    image_relevance = image_relevance.reshape(224, 224).data.cpu().numpy().astype(np.float32)
    # normalize the tensor to [0, 1]
    image_relevance = (image_relevance - image_relevance.min()) / (image_relevance.max() - image_relevance.min())
    return image_relevance