File size: 5,006 Bytes
966ae59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from PIL import Image

import matplotlib.pyplot as plt
import numpy as np
import torch
from torchvision import transforms
from torchvision.utils import make_grid
from skimage.transform import resize

from .u2net import U2NET


def plot_attn_dino(attn, threshold_map, inputs, inds, output_path):
    # currently supports one image (and not a batch)
    plt.figure(figsize=(10, 5))

    plt.subplot(2, attn.shape[0] + 2, 1)
    main_im = make_grid(inputs, normalize=True, pad_value=2)
    main_im = np.transpose(main_im.cpu().numpy(), (1, 2, 0))
    plt.imshow(main_im, interpolation='nearest')
    plt.scatter(inds[:, 1], inds[:, 0], s=10, c='red', marker='o')
    plt.title("input im")
    plt.axis("off")

    plt.subplot(2, attn.shape[0] + 2, 2)
    plt.imshow(attn.sum(0).numpy(), interpolation='nearest')
    plt.title("atn map sum")
    plt.axis("off")

    plt.subplot(2, attn.shape[0] + 2, attn.shape[0] + 3)
    plt.imshow(threshold_map[-1].numpy(), interpolation='nearest')
    plt.title("prob sum")
    plt.axis("off")

    plt.subplot(2, attn.shape[0] + 2, attn.shape[0] + 4)
    plt.imshow(threshold_map[:-1].sum(0).numpy(), interpolation='nearest')
    plt.title("thresh sum")
    plt.axis("off")

    for i in range(attn.shape[0]):
        plt.subplot(2, attn.shape[0] + 2, i + 3)
        plt.imshow(attn[i].numpy())
        plt.axis("off")
        plt.subplot(2, attn.shape[0] + 2, attn.shape[0] + 1 + i + 4)
        plt.imshow(threshold_map[i].numpy())
        plt.axis("off")
    plt.tight_layout()
    plt.savefig(output_path)
    plt.close()


def plot_attn_clip(attn, threshold_map, inputs, inds, output_path):
    # currently supports one image (and not a batch)
    plt.figure(figsize=(10, 5))

    plt.subplot(1, 3, 1)
    main_im = make_grid(inputs, normalize=True, pad_value=2)
    main_im = np.transpose(main_im.cpu().numpy(), (1, 2, 0))
    plt.imshow(main_im, interpolation='nearest')
    plt.scatter(inds[:, 1], inds[:, 0], s=10, c='red', marker='o')
    plt.title("input im")
    plt.axis("off")

    plt.subplot(1, 3, 2)
    plt.imshow(attn, interpolation='nearest', vmin=0, vmax=1)
    plt.title("attn map")
    plt.axis("off")

    plt.subplot(1, 3, 3)
    threshold_map_ = (threshold_map - threshold_map.min()) / \
                     (threshold_map.max() - threshold_map.min())
    plt.imshow(threshold_map_, interpolation='nearest', vmin=0, vmax=1)
    plt.title("prob softmax")
    plt.scatter(inds[:, 1], inds[:, 0], s=10, c='red', marker='o')
    plt.axis("off")

    plt.tight_layout()
    plt.savefig(output_path)
    plt.close()


def plot_attn(attn, threshold_map, inputs, inds, output_path, saliency_model):
    if saliency_model == "dino":
        plot_attn_dino(attn, threshold_map, inputs, inds, output_path)
    elif saliency_model == "clip":
        plot_attn_clip(attn, threshold_map, inputs, inds, output_path)


def fix_image_scale(im):
    im_np = np.array(im) / 255
    height, width = im_np.shape[0], im_np.shape[1]
    max_len = max(height, width) + 20
    new_background = np.ones((max_len, max_len, 3))
    y, x = max_len // 2 - height // 2, max_len // 2 - width // 2
    new_background[y: y + height, x: x + width] = im_np
    new_background = (new_background / new_background.max() * 255).astype(np.uint8)
    new_im = Image.fromarray(new_background)
    return new_im


def get_mask_u2net(pil_im, output_dir, u2net_path, device="cpu"):
    # input preprocess
    w, h = pil_im.size[0], pil_im.size[1]
    im_size = min(w, h)
    data_transforms = transforms.Compose([
        transforms.Resize(min(320, im_size), interpolation=transforms.InterpolationMode.BICUBIC),
        transforms.ToTensor(),
        transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073),
                             std=(0.26862954, 0.26130258, 0.27577711)),
    ])
    input_im_trans = data_transforms(pil_im).unsqueeze(0).to(device)

    # load U^2 Net model
    net = U2NET(in_ch=3, out_ch=1)
    net.load_state_dict(torch.load(u2net_path))
    net.to(device)
    net.eval()

    # get mask
    with torch.no_grad():
        d1, d2, d3, d4, d5, d6, d7 = net(input_im_trans.detach())
    pred = d1[:, 0, :, :]
    pred = (pred - pred.min()) / (pred.max() - pred.min())
    predict = pred
    predict[predict < 0.5] = 0
    predict[predict >= 0.5] = 1
    mask = torch.cat([predict, predict, predict], dim=0).permute(1, 2, 0)
    mask = mask.cpu().numpy()
    mask = resize(mask, (h, w), anti_aliasing=False)
    mask[mask < 0.5] = 0
    mask[mask >= 0.5] = 1

    # predict_np = predict.clone().cpu().data.numpy()
    im = Image.fromarray((mask[:, :, 0] * 255).astype(np.uint8)).convert('RGB')
    save_path_ = output_dir / "mask.png"
    im.save(save_path_)

    im_np = np.array(pil_im)
    im_np = im_np / im_np.max()
    im_np = mask * im_np
    im_np[mask == 0] = 1
    im_final = (im_np / im_np.max() * 255).astype(np.uint8)
    im_final = Image.fromarray(im_final)

    # free u2net
    del net
    torch.cuda.empty_cache()

    return im_final, predict