Spaces:
Running
Running
File size: 22,933 Bytes
966ae59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
# -*- coding: utf-8 -*-
# Copyright (c) XiMing Xing. All rights reserved.
# Author: XiMing Xing
# Description:
import PIL
from PIL import Image
from typing import Callable, List, Optional, Union, Tuple, AnyStr
import numpy as np
import torch
import torch.nn.functional as F
from torch.cuda.amp import custom_bwd, custom_fwd
from torchvision import transforms
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
from pytorch_svgrender.token2attn.attn_control import AttentionStore
from pytorch_svgrender.token2attn.ptp_utils import text_under_image, view_images
class Token2AttnMixinASDSPipeline(StableDiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
_optional_components = ["safety_checker", "feature_extractor"]
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
height: Optional[int] = None,
width: Optional[int] = None,
controller: AttentionStore = None, # feed attention_store as control of ptp
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
self.register_attention_control(controller) # add attention controller
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, callback_steps)
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_embeddings = self._encode_prompt(
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
try:
num_channels_latents = self.unet.config.in_channels
except Exception or Warning:
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
text_embeddings.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. inherit TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# step callback
latents = controller.step_callback(latents)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# image = self.decode_latents(latents)
# 8. Post-processing
# 9. Run safety checker
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
# 10. Convert to output_type
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
def encode_(self, images):
images = (2 * images - 1).clamp(-1.0, 1.0) # images: [B, 3, H, W]
# encode images
latents = self.vae.encode(images).latent_dist.sample()
latents = self.vae.config.scaling_factor * latents
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
@staticmethod
def S_aug(sketch: torch.Tensor,
crop_size: int = 512,
augments: str = "affine_contrast"):
# init augmentations
augment_list = []
if "affine" in augments:
augment_list.append(
transforms.RandomPerspective(fill=0, p=1.0, distortion_scale=0.5)
)
augment_list.append(
transforms.RandomResizedCrop(crop_size, scale=(0.8, 0.8), ratio=(1.0, 1.0))
)
if "contrast" in augments:
# 2: increases the sharpness by a factor of 2.
augment_list.append(
transforms.RandomAdjustSharpness(sharpness_factor=2)
)
augment_compose = transforms.Compose(augment_list)
return augment_compose(sketch)
def score_distillation_sampling(self,
pred_rgb: torch.Tensor,
crop_size: int,
augments: str,
prompt: Union[List, str],
negative_prompt: Union[List, str] = None,
guidance_scale: float = 100,
as_latent: bool = False,
grad_scale: float = 1,
t_range: Union[List[float], Tuple[float]] = (0.02, 0.98)):
num_train_timesteps = self.scheduler.config.num_train_timesteps
min_step = int(num_train_timesteps * t_range[0])
max_step = int(num_train_timesteps * t_range[1])
alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience
# sketch augmentation
pred_rgb_a = self.S_aug(pred_rgb, crop_size, augments)
# interp to crop_size x crop_size to be fed into vae.
if as_latent:
latents = F.interpolate(pred_rgb_a, (64, 64), mode='bilinear', align_corners=False) * 2 - 1
else:
# encode image into latents with vae, requires grad!
latents = self.encode_(pred_rgb_a)
# Encode input prompt
num_images_per_prompt = 1 # the number of images to generate per prompt
do_classifier_free_guidance = guidance_scale > 1.0
text_embeddings = self._encode_prompt(
prompt, self.device, num_images_per_prompt, do_classifier_free_guidance,
negative_prompt=negative_prompt,
)
# timestep ~ U(0.02, 0.98) to avoid very high/low noise level
t = torch.randint(min_step, max_step + 1, [1], dtype=torch.long, device=self.device)
# predict the noise residual with unet, stop gradient
with torch.no_grad():
# add noise
noise = torch.randn_like(latents)
latents_noisy = self.scheduler.add_noise(latents, noise, t)
# pred noise
latent_model_input = torch.cat([latents_noisy] * 2) if do_classifier_free_guidance else latents_noisy
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance (high scale from paper!)
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_pos = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_pos - noise_pred_uncond)
# w(t), sigma_t^2
w = (1 - alphas[t])
grad = grad_scale * w * (noise_pred - noise)
grad = torch.nan_to_num(grad)
# since we omitted an item in grad, we need to use the custom function to specify the gradient
loss = SpecifyGradient.apply(latents, grad)
return loss, grad.mean()
def register_attention_control(self, controller):
attn_procs = {}
cross_att_count = 0
for name in self.unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = self.unet.config.block_out_channels[-1]
place_in_unet = "mid"
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id]
place_in_unet = "up"
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = self.unet.config.block_out_channels[block_id]
place_in_unet = "down"
else:
continue
cross_att_count += 1
attn_procs[name] = P2PCrossAttnProcessor(
controller=controller, place_in_unet=place_in_unet
)
self.unet.set_attn_processor(attn_procs)
controller.num_att_layers = cross_att_count
@staticmethod
def aggregate_attention(prompts,
attention_store: AttentionStore,
res: int,
from_where: List[str],
is_cross: bool,
select: int):
if isinstance(prompts, str):
prompts = [prompts]
assert isinstance(prompts, list)
out = []
attention_maps = attention_store.get_average_attention()
num_pixels = res ** 2
for location in from_where:
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
if item.shape[1] == num_pixels:
cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select]
out.append(cross_maps)
out = torch.cat(out, dim=0)
out = out.sum(0) / out.shape[0]
return out.cpu()
def get_cross_attention(self,
prompts,
attention_store: AttentionStore,
res: int,
from_where: List[str],
select: int = 0,
save_path=None):
tokens = self.tokenizer.encode(prompts[select])
decoder = self.tokenizer.decode
# shape: [res ** 2, res ** 2, seq_len]
attention_maps = self.aggregate_attention(prompts, attention_store, res, from_where, True, select)
images = []
for i in range(len(tokens)):
image = attention_maps[:, :, i]
image = 255 * image / image.max()
image = image.unsqueeze(-1).expand(*image.shape, 3)
image = image.numpy().astype(np.uint8)
image = np.array(Image.fromarray(image).resize((256, 256)))
image = text_under_image(image, decoder(int(tokens[i])))
images.append(image)
image_array = np.stack(images, axis=0)
view_images(image_array, save_image=True, fp=save_path)
return attention_maps, tokens
def get_self_attention_comp(self,
prompts,
attention_store: AttentionStore,
res: int,
from_where: List[str],
img_size: int = 224,
max_com=10,
select: int = 0,
save_path: AnyStr = None):
attention_maps = self.aggregate_attention(prompts, attention_store, res, from_where, False, select)
attention_maps = attention_maps.numpy().reshape((res ** 2, res ** 2))
# shape: [res ** 2, res ** 2]
u, s, vh = np.linalg.svd(attention_maps - np.mean(attention_maps, axis=1, keepdims=True))
print(f"self-attention_maps: {attention_maps.shape}, "
f"u: {u.shape}, "
f"s: {s.shape}, "
f"vh: {vh.shape}")
images = []
vh_returns = []
for i in range(max_com):
image = vh[i].reshape(res, res)
image = (image - image.min()) / (image.max() - image.min())
image = 255 * image
ret_ = Image.fromarray(image).resize((img_size, img_size), resample=PIL.Image.Resampling.BILINEAR)
vh_returns.append(np.array(ret_))
image = np.repeat(np.expand_dims(image, axis=2), 3, axis=2).astype(np.uint8)
image = Image.fromarray(image).resize((256, 256))
image = np.array(image)
images.append(image)
image_array = np.stack(images, axis=0)
view_images(image_array, num_rows=max_com // 10, offset_ratio=0,
save_image=True, fp=save_path / "self-attn-vh.png")
return attention_maps, (u, s, vh), np.stack(vh_returns, axis=0)
class P2PCrossAttnProcessor:
def __init__(self, controller, place_in_unet):
super().__init__()
self.controller = controller
self.place_in_unet = place_in_unet
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size=batch_size)
query = attn.to_q(hidden_states)
is_cross = encoder_hidden_states is not None
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
# one line change
self.controller(attention_probs, is_cross, self.place_in_unet)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class SpecifyGradient(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, input_tensor, gt_grad):
ctx.save_for_backward(gt_grad)
# we return a dummy value 1, which will be scaled by amp's scaler so we get the scale in backward.
return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype)
@staticmethod
@custom_bwd
def backward(ctx, grad_scale):
gt_grad, = ctx.saved_tensors
gt_grad = gt_grad * grad_scale
return gt_grad, None
|