File size: 11,590 Bytes
966ae59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# -*- coding: utf-8 -*-
# Copyright (c) XiMing Xing. All rights reserved.
# Author: XiMing Xing
# Description:
import random
import pathlib

import omegaconf
import pydiffvg
import numpy as np
import torch

from pytorch_svgrender.libs.modules.edge_map.DoG import XDoG
from pytorch_svgrender.diffvg_warp import DiffVGState


class Painter(DiffVGState):

    def __init__(
            self,
            cfg: omegaconf.DictConfig,
            diffvg_cfg: omegaconf.DictConfig,
            num_strokes: int = 4,
            num_segments: int = 4,
            canvas_size: int = 224,
            device: torch.device = None,
            target_im: torch.Tensor = None,
            attention_map: torch.Tensor = None,
            mask: torch.Tensor = None,
    ):
        super(Painter, self).__init__(device, print_timing=diffvg_cfg.print_timing,
                                      canvas_width=canvas_size, canvas_height=canvas_size)

        self.num_paths = num_strokes
        self.num_segments = num_segments
        self.width = cfg.width
        self.max_width = cfg.max_width
        self.optim_width = cfg.optim_width
        self.control_points_per_seg = cfg.control_points_per_seg
        self.optim_rgba = cfg.optim_rgba
        self.optim_alpha = cfg.optim_opacity
        self.num_stages = cfg.num_stages
        self.softmax_temp = cfg.softmax_temp

        self.shapes = []
        self.shape_groups = []
        self.num_control_points = 0
        self.color_vars_threshold = cfg.color_vars_threshold

        self.path_svg = cfg.path_svg
        self.strokes_per_stage = self.num_paths
        self.optimize_flag = []

        # attention related for strokes initialisation
        self.attention_init = cfg.attention_init
        self.xdog_intersec = cfg.xdog_intersec

        self.GT_input = target_im
        self.mask = mask
        self.attention_map = attention_map if self.attention_init else None

        self.thresh = self.set_attention_threshold_map() if self.attention_init else None
        self.strokes_counter = 0  # counts the number of calls to "get_path"

    def init_image(self, stage=0):
        if stage > 0:
            # Noting: if multi stages training than add new strokes on existing ones
            # don't optimize on previous strokes
            self.optimize_flag = [False for i in range(len(self.shapes))]
            for i in range(self.strokes_per_stage):
                stroke_color = torch.tensor([0.0, 0.0, 0.0, 1.0])
                path = self.get_path()
                self.shapes.append(path)
                path_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor([len(self.shapes) - 1]),
                                                 fill_color=None,
                                                 stroke_color=stroke_color)
                self.shape_groups.append(path_group)
                self.optimize_flag.append(True)
        else:
            num_paths_exists = 0
            if self.path_svg is not None and pathlib.Path(self.path_svg).exists():
                print(f"-> init svg from `{self.path_svg}` ...")

                self.canvas_width, self.canvas_height, self.shapes, self.shape_groups = self.load_svg(self.path_svg)
                # if you want to add more strokes to existing ones and optimize on all of them
                num_paths_exists = len(self.shapes)

            for i in range(num_paths_exists, self.num_paths):
                stroke_color = torch.tensor([0.0, 0.0, 0.0, 1.0])
                path = self.get_path()
                self.shapes.append(path)
                path_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor([len(self.shapes) - 1]),
                                                 fill_color=None,
                                                 stroke_color=stroke_color)
                self.shape_groups.append(path_group)
            self.optimize_flag = [True for i in range(len(self.shapes))]

        img = self.render_warp()
        img = img[:, :, 3:4] * img[:, :, :3] + \
              torch.ones(img.shape[0], img.shape[1], 3, device=self.device) * (1 - img[:, :, 3:4])
        img = img[:, :, :3]
        img = img.unsqueeze(0)  # convert img from HWC to NCHW
        img = img.permute(0, 3, 1, 2).to(self.device)  # NHWC -> NCHW

        return img

    def get_image(self):
        img = self.render_warp()

        opacity = img[:, :, 3:4]
        img = opacity * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device=self.device) * (1 - opacity)
        img = img[:, :, :3]
        img = img.unsqueeze(0)  # convert img from HWC to NCHW
        img = img.permute(0, 3, 1, 2).to(self.device)  # NHWC -> NCHW
        return img

    def get_path(self):
        self.num_control_points = torch.zeros(self.num_segments, dtype=torch.int32) + (self.control_points_per_seg - 2)
        points = []
        p0 = self.inds_normalised[self.strokes_counter] if self.attention_init else (random.random(), random.random())
        points.append(p0)

        for j in range(self.num_segments):
            radius = 0.05
            for k in range(self.control_points_per_seg - 1):
                p1 = (p0[0] + radius * (random.random() - 0.5), p0[1] + radius * (random.random() - 0.5))
                points.append(p1)
                p0 = p1
        points = torch.tensor(points).to(self.device)
        points[:, 0] *= self.canvas_width
        points[:, 1] *= self.canvas_height

        path = pydiffvg.Path(num_control_points=self.num_control_points,
                             points=points,
                             stroke_width=torch.tensor(self.width),
                             is_closed=False)
        self.strokes_counter += 1
        return path

    def clip_curve_shape(self):
        if self.optim_width:
            for path in self.shapes:
                path.stroke_width.data.clamp_(1.0, self.max_width)
        if self.optim_rgba:
            for group in self.shape_groups:
                group.stroke_color.data.clamp_(0.0, 1.0)
        else:
            if self.optim_alpha:
                for group in self.shape_groups:
                    # group.stroke_color.data: RGBA
                    group.stroke_color.data[:3].clamp_(0., 0.)  # to force black stroke
                    group.stroke_color.data[-1].clamp_(0., 1.)  # opacity

    def path_pruning(self):
        for group in self.shape_groups:
            group.stroke_color.data[-1] = (group.stroke_color.data[-1] >= self.color_vars_threshold).float()

    def set_points_parameters(self):
        # stoke`s location optimization
        self.point_vars = []
        for i, path in enumerate(self.shapes):
            if self.optimize_flag[i]:
                path.points.requires_grad = True
                self.point_vars.append(path.points)

    def get_points_params(self):
        return self.point_vars

    def set_width_parameters(self):
        # stroke`s  width optimization
        self.width_vars = []
        for i, path in enumerate(self.shapes):
            if self.optimize_flag[i]:
                path.stroke_width.requires_grad = True
                self.width_vars.append(path.stroke_width)

    def get_width_parameters(self):
        return self.width_vars

    def set_color_parameters(self):
        # for strokes color optimization (opacity)
        self.color_vars = []
        for i, group in enumerate(self.shape_groups):
            if self.optimize_flag[i]:
                group.stroke_color.requires_grad = True
                self.color_vars.append(group.stroke_color)

    def get_color_parameters(self):
        return self.color_vars

    def save_svg(self, output_dir, fname):
        pydiffvg.save_svg(f'{output_dir}/{fname}.svg',
                          self.canvas_width,
                          self.canvas_height,
                          self.shapes,
                          self.shape_groups)

    @staticmethod
    def softmax(x, tau=0.2):
        e_x = np.exp(x / tau)
        return e_x / e_x.sum()

    def set_inds_ldm(self):
        attn_map = (self.attention_map - self.attention_map.min()) / \
                   (self.attention_map.max() - self.attention_map.min())

        if self.xdog_intersec:
            xdog = XDoG(k=10)
            im_xdog = xdog(self.GT_input[0].permute(1, 2, 0).cpu().numpy())
            print(f"use XDoG, shape: {im_xdog.shape}")
            intersec_map = (1 - im_xdog) * attn_map
            attn_map = intersec_map

        attn_map_soft = np.copy(attn_map)
        attn_map_soft[attn_map > 0] = self.softmax(attn_map[attn_map > 0], tau=self.softmax_temp)

        # select points
        k = self.num_stages * self.num_paths
        self.inds = np.random.choice(range(attn_map.flatten().shape[0]),
                                     size=k,
                                     replace=False,
                                     p=attn_map_soft.flatten())
        self.inds = np.array(np.unravel_index(self.inds, attn_map.shape)).T

        self.inds_normalised = np.zeros(self.inds.shape)
        self.inds_normalised[:, 0] = self.inds[:, 1] / self.canvas_width
        self.inds_normalised[:, 1] = self.inds[:, 0] / self.canvas_height
        self.inds_normalised = self.inds_normalised.tolist()
        return attn_map_soft

    def set_attention_threshold_map(self):
        return self.set_inds_ldm()

    def get_attn(self):
        return self.attention_map

    def get_thresh(self):
        return self.thresh

    def get_inds(self):
        return self.inds

    def get_mask(self):
        return self.mask


class SketchPainterOptimizer:

    def __init__(
            self,
            renderer: Painter,
            points_lr: float,
            optim_alpha: bool,
            optim_rgba: bool,
            color_lr: float,
            optim_width: bool,
            width_lr: float
    ):
        self.renderer = renderer

        self.points_lr = points_lr
        self.optim_color = optim_alpha or optim_rgba
        self.color_lr = color_lr
        self.optim_width = optim_width
        self.width_lr = width_lr

        self.points_optimizer, self.width_optimizer, self.color_optimizer = None, None, None

    def init_optimizers(self):
        self.renderer.set_points_parameters()
        self.points_optimizer = torch.optim.Adam(self.renderer.get_points_params(), lr=self.points_lr)
        if self.optim_color:
            self.renderer.set_color_parameters()
            self.color_optimizer = torch.optim.Adam(self.renderer.get_color_parameters(), lr=self.color_lr)
        if self.optim_width:
            self.renderer.set_width_parameters()
            self.width_optimizer = torch.optim.Adam(self.renderer.get_width_parameters(), lr=self.width_lr)

    def update_lr(self, step, decay_steps=(500, 750)):
        if step % decay_steps[0] == 0 and step > 0:
            for param_group in self.points_optimizer.param_groups:
                param_group['lr'] = 0.4
        if step % decay_steps[1] == 0 and step > 0:
            for param_group in self.points_optimizer.param_groups:
                param_group['lr'] = 0.1

    def zero_grad_(self):
        self.points_optimizer.zero_grad()
        if self.optim_color:
            self.color_optimizer.zero_grad()
        if self.optim_width:
            self.width_optimizer.zero_grad()

    def step_(self):
        self.points_optimizer.step()
        if self.optim_color:
            self.color_optimizer.step()
        if self.optim_width:
            self.width_optimizer.step()

    def get_lr(self):
        return self.points_optimizer.param_groups[0]['lr']