File size: 9,006 Bytes
966ae59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# -*- coding: utf-8 -*-
# Author: ximing
# Description: DiffVG painter and optimizer
# Copyright (c) 2023, XiMing Xing.
# License: MPL-2.0 License

import copy
import random
from typing import List

import omegaconf
import numpy as np
import pydiffvg
import torch
from torch.optim.lr_scheduler import LambdaLR

from pytorch_svgrender.diffvg_warp import DiffVGState


class Painter(DiffVGState):

    def __init__(
            self,
            target_img: torch.Tensor,
            diffvg_cfg: omegaconf.DictConfig,
            canvas_size: List,
            path_type: str = 'unclosed',
            max_width: float = 3.0,
            device: torch.device = None,
    ):
        super(Painter, self).__init__(device, print_timing=diffvg_cfg.print_timing,
                                      canvas_width=canvas_size[0], canvas_height=canvas_size[1])

        self.target_img = target_img
        self.path_type: str = path_type
        self.max_width = max_width
        self.train_stroke: bool = path_type == 'unclosed'

        self.strokes_counter: int = 0  # counts the number of calls to "get_path"

    def init_image(self, num_paths=0):
        for i in range(num_paths):
            path = self.get_path()
            self.shapes.append(path)
            self.shapes.append(path)

            fill_color_init = torch.FloatTensor(np.random.uniform(size=[4]))
            stroke_color_init = torch.FloatTensor(np.random.uniform(size=[4]))
            path_group = pydiffvg.ShapeGroup(
                shape_ids=torch.tensor([len(self.shapes) - 1]),
                fill_color=None if self.train_stroke else fill_color_init,
                stroke_color=stroke_color_init if self.train_stroke else None
            )
            self.shape_groups.append(path_group)
            self.shape_groups.append(path_group)

        img = self.render_warp()
        img = img[:, :, 3:4] * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device=self.device) \
              * (1 - img[:, :, 3:4])
        img = img.unsqueeze(0)  # convert img from HWC to NCHW
        img = img.permute(0, 3, 1, 2).to(self.device)  # NHWC -> NCHW
        return img

    def get_image(self, step: int = 0):
        img = self.render_warp(seed=step)
        img = img[:, :, 3:4] * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device=self.device) \
              * (1 - img[:, :, 3:4])
        img = img.unsqueeze(0)  # convert img from HWC to NCHW
        img = img.permute(0, 3, 1, 2).to(self.device)  # NHWC -> NCHW
        return img

    def get_path(self):
        if self.path_type == 'unclosed':
            num_segments = random.randint(1, 3)
            num_control_points = torch.zeros(num_segments, dtype=torch.int32) + 2
            points = []
            p0 = (random.random(), random.random())
            points.append(p0)
            for j in range(num_segments):
                radius = 0.05
                p1 = (p0[0] + radius * (random.random() - 0.5), p0[1] + radius * (random.random() - 0.5))
                p2 = (p1[0] + radius * (random.random() - 0.5), p1[1] + radius * (random.random() - 0.5))
                p3 = (p2[0] + radius * (random.random() - 0.5), p2[1] + radius * (random.random() - 0.5))
                points.append(p1)
                points.append(p2)
                points.append(p3)
                p0 = p3
            points = torch.tensor(points)
            points[:, 0] *= self.canvas_width
            points[:, 1] *= self.canvas_height
            # points = torch.rand(3 * num_segments + 1, 2) * min(canvas_width, canvas_height)

            path = pydiffvg.Path(num_control_points=num_control_points,
                                 points=points,
                                 stroke_width=torch.tensor(1.0),
                                 is_closed=False)
        elif self.path_type == 'closed':
            num_segments = random.randint(3, 5)
            num_control_points = torch.zeros(num_segments, dtype=torch.int32) + 2
            points = []
            p0 = (random.random(), random.random())
            points.append(p0)
            for j in range(num_segments):
                radius = 0.05
                p1 = (p0[0] + radius * (random.random() - 0.5), p0[1] + radius * (random.random() - 0.5))
                p2 = (p1[0] + radius * (random.random() - 0.5), p1[1] + radius * (random.random() - 0.5))
                p3 = (p2[0] + radius * (random.random() - 0.5), p2[1] + radius * (random.random() - 0.5))
                points.append(p1)
                points.append(p2)
                if j < num_segments - 1:
                    points.append(p3)
                    p0 = p3
            points = torch.tensor(points)
            points[:, 0] *= self.canvas_width
            points[:, 1] *= self.canvas_height
            path = pydiffvg.Path(num_control_points=num_control_points,
                                 points=points,
                                 stroke_width=torch.tensor(1.0),
                                 is_closed=True)

        self.strokes_counter += 1
        return path

    def clip_curve_shape(self):
        if self.train_stroke:  # open-form path
            for path in self.shapes:
                path.stroke_width.data.clamp_(1.0, self.max_width)
            for group in self.shape_groups:
                group.stroke_color.data.clamp_(0.0, 1.0)
        else:  # closed-form path
            for group in self.shape_groups:
                group.fill_color.data.clamp_(0.0, 1.0)

    def set_parameters(self):
        # stroke`s location optimization
        self.point_vars = []
        for i, path in enumerate(self.shapes):
            path.points.requires_grad = True
            self.point_vars.append(path.points)

            if self.train_stroke:
                path.stroke_width.requires_grad = True
                self.width_vars.append(path.stroke_width)

        # for stroke' color optimization
        self.color_vars = []
        for i, group in enumerate(self.shape_groups):
            if self.train_stroke:
                group.stroke_color.requires_grad = True
                self.color_vars.append(group.stroke_color)
            else:
                group.fill_color.requires_grad = True
                self.color_vars.append(group.fill_color)

    def get_point_parameters(self):
        return self.point_vars

    def get_color_parameters(self):
        return self.color_vars

    def get_stroke_parameters(self):
        return self.width_vars, self.get_color_parameters()

    def save_svg(self, fpath):
        pydiffvg.save_svg(f'{fpath}', self.canvas_width, self.canvas_height, self.shapes, self.shape_groups)


class LinearDecayLR:

    def __init__(self, decay_every, decay_ratio):
        self.decay_every = decay_every
        self.decay_ratio = decay_ratio

    def __call__(self, n):
        decay_time = n // self.decay_every
        decay_step = n % self.decay_every
        lr_s = self.decay_ratio ** decay_time
        lr_e = self.decay_ratio ** (decay_time + 1)
        r = decay_step / self.decay_every
        lr = lr_s * (1 - r) + lr_e * r
        return lr


class PainterOptimizer:

    def __init__(self,
                 renderer: Painter,
                 num_iter: int,
                 lr_config: omegaconf.DictConfig,
                 trainable_stroke: bool = False):
        self.renderer = renderer
        self.num_iter = num_iter
        self.trainable_stroke = trainable_stroke

        self.lr_base = {
            'point': lr_config.point,
            'color': lr_config.color,
            'stroke_width': lr_config.stroke_width,
            'stroke_color': lr_config.stroke_color,
        }

        self.learnable_params = []  # list[Dict]

        self.optimizer = None
        self.scheduler = None

    def init_optimizer(self):
        # optimizers
        params = {}
        self.renderer.set_parameters()
        params['point'] = self.renderer.get_point_parameters()

        if self.trainable_stroke:
            params['stroke_width'], params['stroke_color'] = self.renderer.get_stroke_parameters()
        else:
            params['color'] = self.renderer.get_color_parameters()

        self.learnable_params = [
            {'params': params[ki], 'lr': self.lr_base[ki]} for ki in sorted(params.keys())
        ]
        self.optimizer = torch.optim.Adam(self.learnable_params)

        # lr schedule
        lr_lambda_fn = LinearDecayLR(self.num_iter, 0.4)
        self.scheduler = LambdaLR(self.optimizer, lr_lambda=lr_lambda_fn, last_epoch=-1)

    def update_params(self, name: str, value: torch.tensor):
        for param_group in self.learnable_params:
            if param_group.get('_id') == name:
                param_group['params'] = value

    def update_lr(self):
        self.scheduler.step()

    def zero_grad_(self):
        self.optimizer.zero_grad()

    def step_(self):
        self.optimizer.step()

    def get_lr(self):
        return self.optimizer.param_groups[0]['lr']