File size: 16,120 Bytes
966ae59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# -*- coding: utf-8 -*-
# Author: ximing
# Description: LIVE painter and optimizer
# Copyright (c) 2023, XiMing Xing.
# License: MIT License

import copy
import random

import omegaconf
from omegaconf import DictConfig

import cv2
import numpy as np
import pydiffvg
import torch
from torch.optim.lr_scheduler import LambdaLR

from pytorch_svgrender.diffvg_warp import DiffVGState


class Painter(DiffVGState):

    def __init__(
            self,
            target_img: torch.Tensor,
            diffvg_cfg: omegaconf.DictConfig,
            num_segments: int = 4,
            segment_init: str = 'random',
            radius: int = 5,
            canvas_size=240,
            trainable_bg: bool = False,
            stroke: bool = False,
            stroke_width: int = 3,
            device: torch.device = None,
    ):
        super(Painter, self).__init__(device, print_timing=diffvg_cfg.print_timing,
                                      canvas_width=canvas_size, canvas_height=canvas_size)

        self.target_img = target_img

        self.num_segments = num_segments
        self.segment_init = segment_init
        self.radius = radius
        self.train_stroke = stroke
        self.stroke_width = stroke_width

        self.points_vars = []
        self.stroke_width_vars = []
        self.stroke_color_vars = []
        self.color_vars = []

        self.strokes_counter = 0  # counts the number of calls to "get_path"

        # Background
        self.para_bg = torch.tensor([1., 1., 1.], requires_grad=trainable_bg, device=self.device)

        self.pos_init_method = None

    def component_wise_path_init(self, pred, init_type: str = 'sparse'):
        assert self.target_img is not None  # gt

        if init_type == 'random':
            self.pos_init_method = RandomCoordInit(self.canvas_height, self.canvas_width)
        elif init_type == 'sparse':
            # when initialized for the first time, the render result is None
            if pred is None:
                pred = self.para_bg.view(1, -1, 1, 1).repeat(1, 1, self.canvas_height, self.canvas_width)
            # then pred is the render result
            self.pos_init_method = SparseCoordInit(pred, self.target_img)
        elif init_type == 'naive':
            if pred is None:
                pred = self.para_bg.view(1, -1, 1, 1).repeat(1, 1, self.canvas_height, self.canvas_width)
            self.pos_init_method = NaiveCoordInit(pred, self.target_img)
        else:
            raise NotImplementedError(f"'{init_type}' is not support.")

    def init_image(self, num_paths=0):
        self.cur_shapes, self.cur_shape_groups = [], []

        for i in range(num_paths):
            path, color_ref = self.get_path()
            self.shapes.append(path)
            self.cur_shapes.append(path)

            wref, href = color_ref
            wref = max(0, min(int(wref), self.canvas_width - 1))
            href = max(0, min(int(href), self.canvas_height - 1))
            fill_color_init = list(self.target_img[0, :, href, wref]) + [1.]
            fill_color_init = torch.FloatTensor(fill_color_init)
            stroke_color_init = torch.FloatTensor(np.random.uniform(size=[4]))
            path_group = pydiffvg.ShapeGroup(
                shape_ids=torch.tensor([len(self.shapes) - 1]),
                fill_color=None if self.train_stroke else fill_color_init,
                stroke_color=stroke_color_init if self.train_stroke else None
            )
            self.shape_groups.append(path_group)
            self.cur_shape_groups.append(path_group)

        img = self.render_warp()
        img = img[:, :, 3:4] * img[:, :, :3] + self.para_bg * (1 - img[:, :, 3:4])
        img = img.unsqueeze(0)  # convert img from HWC to NCHW
        img = img.permute(0, 3, 1, 2).to(self.device)  # NHWC -> NCHW
        return img

    def get_image(self, step: int = 0):
        img = self.render_warp(seed=step)
        img = img[:, :, 3:4] * img[:, :, :3] + self.para_bg * (1 - img[:, :, 3:4])
        img = img.unsqueeze(0)  # convert img from HWC to NCHW
        img = img.permute(0, 3, 1, 2).to(self.device)  # NHWC -> NCHW
        return img

    def get_path(self):
        num_segments = self.num_segments
        num_control_points = [2] * num_segments

        points = []
        # init segment
        if self.segment_init == 'circle':
            radius = self.radius if self.radius is not None else np.random.uniform(0.5, 1)
            if self.pos_init_method is not None:
                center = self.pos_init_method()
            else:
                center = (random.random(), random.random())
            bias = center
            color_ref = copy.deepcopy(bias)

            avg_degree = 360 / (num_segments * 3)
            for i in range(0, num_segments * 3):
                point = (
                    np.cos(np.deg2rad(i * avg_degree)), np.sin(np.deg2rad(i * avg_degree))
                )
                points.append(point)

            points = torch.FloatTensor(points) * radius + torch.FloatTensor(bias).unsqueeze(dim=0)
        else:  # 'random' init
            p0 = self.pos_init_method()
            color_ref = copy.deepcopy(p0)
            points.append(p0)
            for j in range(num_segments):
                radius = self.radius
                p1 = (p0[0] + radius * np.random.uniform(-0.5, 0.5),
                      p0[1] + radius * np.random.uniform(-0.5, 0.5))
                p2 = (p1[0] + radius * np.random.uniform(-0.5, 0.5),
                      p1[1] + radius * np.random.uniform(-0.5, 0.5))
                p3 = (p2[0] + radius * np.random.uniform(-0.5, 0.5),
                      p2[1] + radius * np.random.uniform(-0.5, 0.5))
                points.append(p1)
                points.append(p2)
                if j < num_segments - 1:
                    points.append(p3)
                    p0 = p3
            points = torch.FloatTensor(points)

        path = pydiffvg.Path(
            num_control_points=torch.LongTensor(num_control_points),
            points=points,
            stroke_width=torch.tensor(float(self.stroke_width)) if self.train_stroke else torch.tensor(0.0),
            is_closed=True
        )

        self.strokes_counter += 1
        return path, color_ref

    def clip_curve_shape(self):
        for group in self.shape_groups:
            if self.train_stroke:
                group.stroke_color.data.clamp_(0.0, 1.0)
            else:
                group.fill_color.data.clamp_(0.0, 1.0)

    def calc_distance_weight(self, loss_weight_keep):
        shapes_forsdf = copy.deepcopy(self.cur_shapes)
        shape_groups_forsdf = copy.deepcopy(self.cur_shape_groups)
        for si in shapes_forsdf:
            si.stroke_width = torch.FloatTensor([0]).to(self.device)
        for sg_idx, sgi in enumerate(shape_groups_forsdf):
            sgi.fill_color = torch.FloatTensor([1, 1, 1, 1]).to(self.device)
            sgi.shape_ids = torch.LongTensor([sg_idx]).to(self.device)

        sargs_forsdf = pydiffvg.RenderFunction.serialize_scene(
            self.canvas_width, self.canvas_height, shapes_forsdf, shape_groups_forsdf
        )
        _render = pydiffvg.RenderFunction.apply
        with torch.no_grad():
            im_forsdf = _render(self.canvas_width,  # width
                                self.canvas_height,  # height
                                2,  # num_samples_x
                                2,  # num_samples_y
                                0,  # seed
                                None,
                                *sargs_forsdf)

        # use alpha channel is a trick to get 0-1 image
        im_forsdf = (im_forsdf[:, :, 3]).detach().cpu().numpy()
        loss_weight = get_sdf(im_forsdf, normalize='to1')
        loss_weight += loss_weight_keep
        loss_weight = np.clip(loss_weight, 0, 1)
        loss_weight = torch.FloatTensor(loss_weight).to(self.device)
        return loss_weight

    def set_parameters(self):
        # stroke`s location optimization
        self.points_vars = []
        for i, path in enumerate(self.cur_shapes):
            path.points.requires_grad = True
            self.points_vars.append(path.points)

            if self.train_stroke:
                path.stroke_width.requires_grad = True
                self.stroke_width_vars.append(path.stroke_width)

        # for stroke' color optimization
        self.color_vars = []
        for i, group in enumerate(self.cur_shape_groups):
            if self.train_stroke:
                group.stroke_color.requires_grad = True
                self.stroke_color_vars.append(group.stroke_color)
            else:
                group.fill_color.requires_grad = True
                self.color_vars.append(group.fill_color)

    def get_point_parameters(self):
        return self.points_vars

    def get_color_parameters(self):
        return self.color_vars

    def get_stroke_parameters(self):
        return self.stroke_width_vars, self.stroke_color_vars

    def get_bg_parameters(self):
        return self.para_bg

    def save_svg(self, fpath):
        pydiffvg.save_svg(f'{fpath}',
                          self.canvas_width,
                          self.canvas_height,
                          self.shapes,
                          self.shape_groups)


def get_sdf(phi, **kwargs):
    import skfmm  # local import

    phi = (phi - 0.5) * 2
    if (phi.max() <= 0) or (phi.min() >= 0):
        return np.zeros(phi.shape).astype(np.float32)
    sd = skfmm.distance(phi, dx=1)

    flip_negative = kwargs.get('flip_negative', True)
    if flip_negative:
        sd = np.abs(sd)

    truncate = kwargs.get('truncate', 10)
    sd = np.clip(sd, -truncate, truncate)
    # print(f"max sd value is: {sd.max()}")

    zero2max = kwargs.get('zero2max', True)
    if zero2max and flip_negative:
        sd = sd.max() - sd
    elif zero2max:
        raise ValueError

    normalize = kwargs.get('normalize', 'sum')
    if normalize == 'sum':
        sd /= sd.sum()
    elif normalize == 'to1':
        sd /= sd.max()
    return sd


class SparseCoordInit:

    def __init__(self, pred, gt, format='[bs x c x 2D]', quantile_interval=200, nodiff_thres=0.1):
        if torch.is_tensor(pred):
            pred = pred.detach().cpu().numpy()
        if torch.is_tensor(gt):
            gt = gt.detach().cpu().numpy()

        if format == '[bs x c x 2D]':
            self.map = ((pred[0] - gt[0]) ** 2).sum(0)
            self.reference_gt = copy.deepcopy(np.transpose(gt[0], (1, 2, 0)))
        elif format == ['[2D x c]']:
            self.map = (np.abs(pred - gt)).sum(-1)
            self.reference_gt = copy.deepcopy(gt[0])
        else:
            raise ValueError

        # OptionA: Zero too small errors to avoid the error too small deadloop
        self.map[self.map < nodiff_thres] = 0
        quantile_interval = np.linspace(0., 1., quantile_interval)
        quantized_interval = np.quantile(self.map, quantile_interval)
        # remove redundant
        quantized_interval = np.unique(quantized_interval)
        quantized_interval = sorted(quantized_interval[1:-1])
        self.map = np.digitize(self.map, quantized_interval, right=False)
        self.map = np.clip(self.map, 0, 255).astype(np.uint8)
        self.idcnt = {}
        for idi in sorted(np.unique(self.map)):
            self.idcnt[idi] = (self.map == idi).sum()
        # remove smallest one to remove the correct region
        self.idcnt.pop(min(self.idcnt.keys()))

    def __call__(self):
        if len(self.idcnt) == 0:
            h, w = self.map.shape
            return [np.random.uniform(0, 1) * w, np.random.uniform(0, 1) * h]

        target_id = max(self.idcnt, key=self.idcnt.get)
        _, component, cstats, ccenter = cv2.connectedComponentsWithStats(
            (self.map == target_id).astype(np.uint8),
            connectivity=4
        )
        # remove cid = 0, it is the invalid area
        csize = [ci[-1] for ci in cstats[1:]]
        target_cid = csize.index(max(csize)) + 1
        center = ccenter[target_cid][::-1]
        coord = np.stack(np.where(component == target_cid)).T
        dist = np.linalg.norm(coord - center, axis=1)
        target_coord_id = np.argmin(dist)
        coord_h, coord_w = coord[target_coord_id]

        # replace_sampling
        self.idcnt[target_id] -= max(csize)
        if self.idcnt[target_id] == 0:
            self.idcnt.pop(target_id)
        self.map[component == target_cid] = 0
        return [coord_w, coord_h]


class RandomCoordInit:
    def __init__(self, canvas_width, canvas_height):
        self.canvas_width, self.canvas_height = canvas_width, canvas_height

    def __call__(self):
        w, h = self.canvas_width, self.canvas_height
        return [np.random.uniform(0, 1) * w, np.random.uniform(0, 1) * h]


class NaiveCoordInit:
    def __init__(self, pred, gt, format='[bs x c x 2D]', replace_sampling=True):
        if isinstance(pred, torch.Tensor):
            pred = pred.detach().cpu().numpy()
        if isinstance(gt, torch.Tensor):
            gt = gt.detach().cpu().numpy()

        if format == '[bs x c x 2D]':
            self.map = ((pred[0] - gt[0]) ** 2).sum(0)
        elif format == ['[2D x c]']:
            self.map = ((pred - gt) ** 2).sum(-1)
        else:
            raise ValueError
        self.replace_sampling = replace_sampling

    def __call__(self):
        coord = np.where(self.map == self.map.max())
        coord_h, coord_w = coord[0][0], coord[1][0]
        if self.replace_sampling:
            self.map[coord_h, coord_w] = -1
        return [coord_w, coord_h]


class LinearDecayLR:

    def __init__(self, decay_every, decay_ratio):
        self.decay_every = decay_every
        self.decay_ratio = decay_ratio

    def __call__(self, n):
        decay_time = n // self.decay_every
        decay_step = n % self.decay_every
        lr_s = self.decay_ratio ** decay_time
        lr_e = self.decay_ratio ** (decay_time + 1)
        r = decay_step / self.decay_every
        lr = lr_s * (1 - r) + lr_e * r
        return lr


class PainterOptimizer:

    def __init__(self,
                 renderer: Painter,
                 num_iter: int,
                 lr_config: DictConfig,
                 trainable_stroke: bool = False,
                 trainable_bg: bool = False):
        self.renderer = renderer
        self.num_iter = num_iter
        self.trainable_stroke = trainable_stroke
        self.trainable_bg = trainable_bg

        self.lr_base = {
            'point': lr_config.point,
            'color': lr_config.color,
            'stroke_width': lr_config.stroke_width,
            'stroke_color': lr_config.stroke_color,
            'bg': lr_config.bg
        }

        self.learnable_params = []  # list[Dict]

        self.optimizer = None
        self.scheduler = None

    def init_optimizers(self):
        # optimizers
        params = {}
        self.renderer.set_parameters()
        params['point'] = self.renderer.get_point_parameters()
        if self.trainable_stroke:
            params['stroke_width'], params['stroke_color'] = self.renderer.get_stroke_parameters()
        else:
            params['color'] = self.renderer.get_color_parameters()

        if self.trainable_bg:
            params['bg'] = self.renderer.get_bg_parameters()

        self.learnable_params = [
            {'params': params[ki], 'lr': self.lr_base[ki]} for ki in sorted(params.keys())
        ]
        self.optimizer = torch.optim.Adam(self.learnable_params)
        # lr schedule
        lr_lambda_fn = LinearDecayLR(self.num_iter, 0.4)
        self.scheduler = LambdaLR(self.optimizer, lr_lambda=lr_lambda_fn, last_epoch=-1)

    def update_params(self, name: str, value: torch.tensor):
        for param_group in self.learnable_params:
            if param_group.get('_id') == name:
                param_group['params'] = value

    def update_lr(self):
        self.scheduler.step()

    def zero_grad_(self):
        self.optimizer.zero_grad()

    def step_(self):
        self.optimizer.step()

    def get_lr(self):
        return self.optimizer.param_groups[0]['lr']