Spaces:
Running
Running
File size: 25,897 Bytes
966ae59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
# -*- coding: utf-8 -*-
# Copyright (c) XiMing Xing. All rights reserved.
# Author: XiMing Xing
# Description:
import re
from typing import Any, List, Optional, Union, Dict
from omegaconf import DictConfig
import torch
import torch.nn.functional as F
from torchvision import transforms
from diffusers import StableDiffusionPipeline, UNet2DConditionModel
from diffusers import DDIMScheduler
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import (
rescale_noise_cfg, StableDiffusionPipelineOutput)
from diffusers.models.attention_processor import LoRAAttnProcessor
from diffusers.loaders import AttnProcsLayers
from pytorch_svgrender.diffusers_warp import init_StableDiffusion_pipeline, init_diffusers_unet
class VectorizedParticleSDSPipeline(torch.nn.Module):
def __init__(self, args: DictConfig, diffuser_cfg: DictConfig, guidance_cfg: DictConfig, device: torch.device):
super().__init__()
self.args = args
self.device = device
assert guidance_cfg.n_particle >= guidance_cfg.vsd_n_particle
assert guidance_cfg.n_particle >= guidance_cfg.phi_n_particle
pipe_kwargs = {
"device": self.device,
"torch_dtype": torch.float32,
"local_files_only": not diffuser_cfg.download,
"force_download": diffuser_cfg.force_download,
"resume_download": diffuser_cfg.resume_download,
"ldm_speed_up": args.x.ldm_speed_up,
"enable_xformers": args.x.enable_xformers,
"gradient_checkpoint": args.x.gradient_checkpoint,
"cpu_offload": args.x.cpu_offload,
"vae_slicing": False
}
# load pretrained model
self.sd_pipeline = init_StableDiffusion_pipeline(
args.x.model_id,
custom_pipeline=StableDiffusionPipeline,
custom_scheduler=DDIMScheduler,
**pipe_kwargs
)
# disable grads
self.sd_pipeline.vae.requires_grad_(False)
self.sd_pipeline.text_encoder.requires_grad_(False)
self.sd_pipeline.unet.requires_grad_(False)
# set components
self.vae = self.sd_pipeline.vae
self.unet = self.sd_pipeline.unet
self.scheduler = self.sd_pipeline.scheduler
self.tokenizer = self.sd_pipeline.tokenizer
self.text_encoder = self.sd_pipeline.text_encoder
if guidance_cfg.phi_model == 'lora':
if guidance_cfg.phi_single: # default, use the single unet
# load LoRA model from the pretrained model
unet_ = self.unet
else:
# create a new unet model
pipe_kwargs.pop('cpu_offload')
pipe_kwargs.pop('vae_slicing')
unet_ = init_diffusers_unet(args.x.model_id, **pipe_kwargs)
# set correct LoRA layers
self.unet_phi, phi_model_layers = self.set_lora_layers(unet_)
self.phi_params = list(phi_model_layers.parameters())
self.lora_cross_attention_kwargs = {"scale": guidance_cfg.lora_attn_scale} \
if guidance_cfg.use_attn_scale else {}
self.vae_phi = self.vae
self.vae_phi.requires_grad_(False)
elif guidance_cfg.phi_model == 'unet_simple':
self.unet_phi = UNet2DConditionModel(
sample_size=64,
in_channels=4,
out_channels=4,
layers_per_block=1,
block_out_channels=(128, 256, 384, 512),
down_block_types=(
"DownBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
),
up_block_types=(
"AttnUpBlock2D",
"AttnUpBlock2D",
"AttnUpBlock2D",
"UpBlock2D",
),
cross_attention_dim=self.unet.config.cross_attention_dim
).to(device)
self.phi_params = list(self.unet_phi.parameters())
self.vae_phi = self.vae
# reset lora
guidance_cfg.use_attn_scale = False
guidance_cfg.lora_attn_scale = False
# hyper-params
self.phi_single = guidance_cfg.phi_single
self.guidance_scale: float = guidance_cfg.guidance_scale
self.guidance_scale_lora: float = guidance_cfg.phi_guidance_scale
self.grad_clip_val: Union[float, None] = guidance_cfg.grad_clip_val
self.vsd_n_particle: int = guidance_cfg.vsd_n_particle
self.phi_n_particle: int = guidance_cfg.phi_n_particle
self.t_schedule: str = guidance_cfg.t_schedule
self.t_range = list(guidance_cfg.t_range)
print(
f'n_particles: {guidance_cfg.n_particle}, '
f'enhance_particles: {guidance_cfg.particle_aug}, '
f'n_particles of score: {self.vsd_n_particle}, '
f'n_particles of phi_model: {self.phi_n_particle}, \n'
f't_range: {self.t_range}, '
f't_schedule: {self.t_schedule}, \n'
f'guidance_scale: {self.guidance_scale}, phi_guidance_scale: {self.guidance_scale_lora}.'
)
print(f"phi_model: {guidance_cfg.phi_model}, "
f"use lora_cross_attn: {guidance_cfg.use_attn_scale}, "
f"lora_attn_scale: {guidance_cfg.lora_attn_scale}. \n")
# for convenience
self.num_train_timesteps = self.scheduler.config.num_train_timesteps
self.alphas = self.scheduler.alphas_cumprod.to(self.device)
self.text_embeddings = None
self.text_embedd_cond, self.text_embedd_uncond = None, None
self.text_embeddings_phi = None
self.t = None
def set_lora_layers(self, unet): # set correct lora layers
lora_attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") \
else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRAAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim
).to(self.device)
unet.set_attn_processor(lora_attn_procs)
lora_layers = AttnProcsLayers(unet.attn_processors)
unet.requires_grad_(False)
for param in lora_layers.parameters():
param.requires_grad_(True)
return unet, lora_layers
@torch.no_grad()
def encode_prompt(self,
prompt,
device,
do_classifier_free_guidance,
negative_prompt=None):
# text conditional embed
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
prompt_embeds = self.text_encoder(text_inputs.input_ids.to(device))[0]
if do_classifier_free_guidance:
if negative_prompt is None:
uncond_tokens = [""]
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
else:
uncond_tokens = negative_prompt
# unconditional embed
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=prompt_embeds.shape[1],
truncation=True,
return_tensors="pt",
)
negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device))[0]
concat_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return concat_prompt_embeds, negative_prompt_embeds, prompt_embeds
return prompt_embeds, None, None
def sampling(self,
vae,
unet,
scheduler,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0):
# 0. Default height and width to unet
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
height = height or unet.config.sample_size * vae_scale_factor
width = width or unet.config.sample_size * vae_scale_factor
# 2. Define call parameters
if prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = 1
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds, _, _ = self.encode_prompt(
prompt,
self.device,
do_classifier_free_guidance,
negative_prompt,
)
# 4. Prepare timesteps
scheduler.set_timesteps(num_inference_steps, device=self.device)
timesteps = scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = unet.config.in_channels
latents = self.sd_pipeline.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
self.device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.sd_pipeline.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.sd_pipeline.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# update progress_bar
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if not output_type == "latent":
image = vae.decode(latents / vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.sd_pipeline.run_safety_checker(image, self.device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.sd_pipeline.image_processor.postprocess(image, output_type=output_type,
do_denormalize=do_denormalize)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
def sample(self,
prompt,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil"):
return self.sampling(self.vae, self.unet, self.scheduler,
prompt=prompt,
height=height, width=width,
num_inference_steps=num_inference_steps,
guidance_scale=self.guidance_scale,
generator=generator,
output_type=output_type)
def sample_lora(self,
prompt,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil"):
return self.sampling(self.vae_phi, self.unet_phi, self.scheduler,
prompt=prompt,
height=height, width=width,
num_inference_steps=num_inference_steps,
guidance_scale=self.guidance_scale_lora,
generator=generator,
cross_attention_kwargs=self.lora_cross_attention_kwargs,
output_type=output_type)
def encode2latent(self, images):
images = (2 * images - 1).clamp(-1.0, 1.0) # images: [B, 3, H, W]
# encode images
latents = self.vae.encode(images).latent_dist.sample()
latents = self.vae.config.scaling_factor * latents
return latents
def get_noise_map(self, noise_pred, guidance_scale=7.5, use_cfg=True):
if use_cfg:
noise_pred_uncond, noise_pred_pos = noise_pred.chunk(2)
noise_map = noise_pred_uncond + guidance_scale * (noise_pred_pos - noise_pred_uncond)
return noise_map
else:
return noise_pred
def train_phi_model(self,
pred_rgb: torch.Tensor,
new_timesteps: bool = False,
as_latent: bool = False):
# interp to 512x512 to be fed into vae.
if as_latent:
latents = pred_rgb
else:
pred_rgb_ = F.interpolate(pred_rgb, (512, 512), mode='bilinear', align_corners=False)
# encode image into latents with vae, requires grad!
latents = self.encode2latent(pred_rgb_)
# get phi particles
indices = torch.randperm(latents.size(0))
latents_phi = latents[indices[:self.phi_n_particle]]
latents_phi = latents_phi.detach()
# get timestep
if new_timesteps:
t = torch.randint(0, self.num_train_timesteps, (1,), device=self.device)
else:
t = self.t
noise = torch.randn_like(latents_phi)
noisy_latents = self.scheduler.add_noise(latents_phi, noise, t)
if self.scheduler.config.prediction_type == "epsilon":
target = noise
elif self.scheduler.config.prediction_type == "v_prediction":
target = self.scheduler.get_velocity(latents_phi, noise, t)
else:
raise ValueError(f"Unknown prediction type {self.scheduler.config.prediction_type}")
# predict the noise residual and compute loss
noise_pred = self.unet_phi(
noisy_latents, t,
encoder_hidden_states=self.text_embeddings_phi,
cross_attention_kwargs=self.lora_cross_attention_kwargs,
).sample
return F.mse_loss(noise_pred, target, reduction="mean")
def train_phi_model_refl(self,
pred_rgb: torch.Tensor,
weight: float = 1,
new_timesteps: bool = True):
# interp to 512x512 to be fed into vae.
pred_rgb_ = F.interpolate(pred_rgb, (512, 512), mode='bilinear', align_corners=False)
# encode image into latents with vae, requires grad!
latents = self.encode2latent(pred_rgb_)
# get phi particles
indices = torch.randperm(latents.size(0))
latents_phi = latents[indices[:self.phi_n_particle]]
latents_phi = latents_phi.detach()
# get timestep
if new_timesteps:
t = torch.randint(0, self.num_train_timesteps, (1,), device=self.device)
else:
t = self.t
noise = torch.randn_like(latents_phi)
noisy_latents = self.scheduler.add_noise(latents_phi, noise, t)
if self.scheduler.config.prediction_type == "epsilon":
target = noise
elif self.scheduler.config.prediction_type == "v_prediction":
target = self.scheduler.get_velocity(latents_phi, noise, t)
else:
raise ValueError(f"Unknown prediction type {self.scheduler.config.prediction_type}")
# predict the noise residual and compute loss
noise_pred = self.unet_phi(
noisy_latents, t,
encoder_hidden_states=self.text_embedd_cond,
cross_attention_kwargs=self.lora_cross_attention_kwargs,
).sample
rewards = torch.tensor(weight, dtype=torch.float32, device=self.device)
return rewards * F.mse_loss(noise_pred, target, reduction="mean")
def schedule_timestep(self, step):
min_step = int(self.num_train_timesteps * self.t_range[0])
max_step = int(self.num_train_timesteps * self.t_range[1])
if self.t_schedule == 'randint':
t = torch.randint(min_step, max_step + 1, [1], dtype=torch.long, device=self.device)
elif re.match(r"max_([\d.]+)_(\d+)", self.t_schedule):
# Anneal time schedule
# e.g: t_schedule == 'max_0.5_200'
# [0.02, 0.98] -> [0.02, 0.5] after 200 steps
tag, t_val, step_upd = str(self.t_schedule).split('_')
t_val, step_upd = float(t_val), int(step_upd)
if step >= step_upd:
max_step = int(self.num_train_timesteps * t_val)
t = torch.randint(min_step, max_step + 1, [1], dtype=torch.long, device=self.device)
elif re.match(r"min_([\d.]+)_(\d+)", self.t_schedule):
# Anneal time schedule
# e.g: t_schedule == 'min_0.5_200'
# [0.02, 0.98] -> [0.5, 0.98] after 200 steps
tag, t_val, step_upd = str(self.t_schedule).split('_')
t_val, step_upd = float(t_val), int(step_upd)
if step >= step_upd:
min_step = int(self.num_train_timesteps * t_val)
t = torch.randint(min_step, max_step + 1, [1], dtype=torch.long, device=self.device)
else:
raise NotImplementedError(f"{self.t_schedule} is not support.")
return t
def set_text_embeddings(self, prompt, negative_prompt, do_classifier_free_guidance):
if self.text_embeddings is not None:
return
# encode text prompt
text_embeddings, text_embeddings_uncond, text_embeddings_cond = \
self.encode_prompt(prompt, self.device, do_classifier_free_guidance, negative_prompt=negative_prompt)
# set pretrained model text embedding
text_embeddings_uncond, text_embeddings_cond = text_embeddings.chunk(2)
self.text_embedd_uncond, self.text_embedd_cond = text_embeddings_uncond, text_embeddings_cond
text_embeddings_unconds = text_embeddings_uncond.repeat_interleave(self.vsd_n_particle, dim=0)
text_embeddings_conds = text_embeddings_cond.repeat_interleave(self.vsd_n_particle, dim=0)
text_embeddings = torch.cat([text_embeddings_unconds, text_embeddings_conds])
self.text_embeddings = text_embeddings
# set phi model text embedding
self.text_embeddings_phi = text_embeddings_cond.repeat_interleave(self.phi_n_particle, dim=0)
def x_augment(self, x: torch.Tensor, img_size: int = 512):
augment_compose = transforms.Compose([
transforms.RandomPerspective(distortion_scale=0.5, p=0.7),
transforms.RandomCrop(size=(img_size, img_size), pad_if_needed=True, padding_mode='reflect')
])
return augment_compose(x)
def variational_score_distillation(self,
pred_rgb: torch.Tensor,
step: int,
prompt: Union[List, str],
negative_prompt: Union[List, str] = None,
grad_scale: float = 1.0,
enhance_particle: bool = False,
im_size: int = 512,
as_latent: bool = False):
bz = pred_rgb.shape[0]
# data enhancement for the input particles
pred_rgb = self.x_augment(pred_rgb, im_size) if enhance_particle else pred_rgb
# interp to 512x512 to be fed into vae.
if as_latent:
latents = F.interpolate(pred_rgb, (64, 64), mode='bilinear', align_corners=False) * 2 - 1
else:
pred_rgb_ = F.interpolate(pred_rgb, (512, 512), mode='bilinear', align_corners=False)
# encode image into latents with vae, requires grad!
# latents = self.encode2latent(pred_rgb_)
latent_list = [self.encode2latent(pred_rgb_[i].unsqueeze(0)) for i in range(bz)]
latents = torch.cat(latent_list, dim=0)
latents = latents.to(self.device)
# random sample n_particle_vsd particles from latents
latents_vsd = latents[torch.randperm(bz)[:self.vsd_n_particle]]
# encode input prompt
do_classifier_free_guidance = True
self.set_text_embeddings(prompt, negative_prompt, do_classifier_free_guidance)
text_embeddings = self.text_embeddings
# timestep a.k.a noise level
self.t = self.schedule_timestep(step)
# predict the noise residual with unet, stop gradient
with torch.no_grad():
# add noise
noise = torch.randn_like(latents_vsd)
latents_noisy = self.scheduler.add_noise(latents_vsd, noise, self.t)
# pred noise
latent_model_input = torch.cat([latents_noisy] * 2) if do_classifier_free_guidance else latents_noisy
# pretrained noise prediction network
noise_pred_pretrain = self.unet(
latent_model_input, self.t,
encoder_hidden_states=text_embeddings,
cross_attention_kwargs={'scale': 0.0} if self.phi_single else {}
).sample
# use conditional text embeddings in phi_model
_, text_embeddings_cond = text_embeddings.chunk(2)
# estimated noise prediction network
noise_pred_est = self.unet_phi(
latents_noisy, self.t,
encoder_hidden_states=text_embeddings_cond,
cross_attention_kwargs=self.lora_cross_attention_kwargs
).sample
# get pretrained score
noise_pred_pretrain = self.get_noise_map(noise_pred_pretrain, self.guidance_scale, use_cfg=True)
# get estimated score
noise_pred_est = self.get_noise_map(noise_pred_est, self.guidance_scale_lora, use_cfg=False)
# w(t), sigma_t^2
w = (1 - self.alphas[self.t])
grad = grad_scale * w * (noise_pred_pretrain - noise_pred_est.detach())
grad = torch.nan_to_num(grad)
# grad clipping for stable training
if self.grad_clip_val is not None and self.grad_clip_val > 0:
grad = grad.clamp(-self.grad_clip_val, self.grad_clip_val)
# re-parameterization trick:
# d(loss)/d(latents) = latents - target = latents - (latents - grad) = grad
target = (latents_vsd - grad).detach()
loss_vpsd = 0.5 * F.mse_loss(latents_vsd, target, reduction="sum")
return loss_vpsd, grad.norm(), latents, self.t
|