File size: 34,570 Bytes
966ae59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
# -*- coding: utf-8 -*-
# Copyright (c) XiMing Xing. All rights reserved.
# Author: XiMing Xing
# Description:
import math
import copy
import random
import pathlib
from typing import Dict

from shapely.geometry.polygon import Polygon
import omegaconf
import cv2
import numpy as np
import pydiffvg
import torch
from torch.optim.lr_scheduler import LambdaLR

from pytorch_svgrender.diffvg_warp import DiffVGState
from pytorch_svgrender.libs.solver.optim import get_optimizer


class Painter(DiffVGState):

    def __init__(
            self,
            diffvg_cfg: omegaconf.DictConfig,
            style: str,
            num_segments: int,
            segment_init: str,
            radius: int = 20,
            canvas_size: int = 600,
            n_grid: int = 32,
            trainable_bg: bool = False,
            stroke_width: int = 3,
            path_svg=None,
            device=None,
    ):
        super().__init__(device, print_timing=diffvg_cfg.print_timing,
                         canvas_width=canvas_size, canvas_height=canvas_size)

        self.style = style

        self.num_segments = num_segments
        self.segment_init = segment_init
        self.radius = radius

        """pixelart params"""
        self.n_grid = n_grid  # divide the canvas into n grids
        self.pixel_per_grid = self.canvas_width // self.n_grid
        """sketch params"""
        self.stroke_width = stroke_width
        """iconography params"""
        self.color_ref = None

        self.path_svg = path_svg
        self.optimize_flag = []

        self.strokes_counter = 0  # counts the number of calls to "get_path"

        # Background color
        self.para_bg = torch.tensor([1., 1., 1.], requires_grad=trainable_bg, device=self.device)

        self.target_img = None
        self.pos_init_method = None

    def component_wise_path_init(self, gt, pred, init_type: str = 'sparse'):
        # set target image
        self.target_img = gt

        if init_type == 'random':
            self.pos_init_method = RandomCoordInit(self.canvas_height, self.canvas_width)
        elif init_type == 'sparse':
            # when initialized for the first time, the render result is None
            if pred is None:
                pred = self.para_bg.view(1, -1, 1, 1).repeat(1, 1, self.canvas_height, self.canvas_width)
            # then pred is the render result
            self.pos_init_method = SparseCoordInit(pred, gt)
        elif init_type == 'naive':
            if pred is None:
                pred = self.para_bg.view(1, -1, 1, 1).repeat(1, 1, self.canvas_height, self.canvas_width)
            self.pos_init_method = NaiveCoordInit(pred, gt)
        else:
            raise NotImplementedError(f"'{init_type}' is not support.")

    def init_image(self, stage=0, num_paths=0):
        self.cur_shapes, self.cur_shape_groups = [], []

        # or init svg by pydiffvg
        if self.style in ['pixelart', 'low-poly']:  # update path definition
            num_paths = self.n_grid

        if stage > 0:
            # Noting: if multi stages training than add new strokes on existing ones
            # don't optimize on previous strokes
            self.optimize_flag = [False for i in range(len(self.shapes))]
            for i in range(num_paths):
                if self.style == 'iconography':
                    path = self.get_path()
                    self.shapes.append(path)
                    self.cur_shapes.append(path)

                    fill_color_init = torch.FloatTensor(np.random.uniform(size=[4]))
                    fill_color_init[-1] = 1.0
                    path_group = pydiffvg.ShapeGroup(
                        shape_ids=torch.tensor([self.strokes_counter - 1]),
                        fill_color=fill_color_init,
                        stroke_color=None
                    )
                    self.shape_groups.append(path_group)
                    self.cur_shape_groups.append(path_group)
                    self.optimize_flag.append(True)

                elif self.style in ['pixelart', 'low-poly']:
                    for j in range(num_paths):
                        path = self.get_path(coord=[i, j])
                        self.shapes.append(path)
                        self.cur_shapes.append(path)

                        fill_color_init = torch.FloatTensor(np.random.uniform(size=[4]))
                        fill_color_init[-1] = 1.0
                        path_group = pydiffvg.ShapeGroup(
                            shape_ids=torch.LongTensor([i * num_paths + j]),
                            fill_color=fill_color_init,
                            stroke_color=None,
                        )
                        self.shape_groups.append(path_group)
                        self.cur_shape_groups.append(path_group)
                        self.optimize_flag.append(True)

                elif self.style in ['ink', 'sketch']:
                    path = self.get_path()
                    self.shapes.append(path)
                    self.cur_shapes.append(path)

                    stroke_color_init = [0.0, 0.0, 0.0] + [random.random()]
                    stroke_color_init = torch.FloatTensor(stroke_color_init)
                    path_group = pydiffvg.ShapeGroup(
                        shape_ids=torch.tensor([len(self.shapes) - 1]),
                        fill_color=None,
                        stroke_color=stroke_color_init
                    )
                    self.shape_groups.append(path_group)
                    self.cur_shape_groups.append(path_group)

                elif self.style == 'painting':
                    path = self.get_path()
                    self.shapes.append(path)
                    self.cur_shapes.append(path)

                    wref, href = self.color_ref
                    wref = max(0, min(int(wref), self.canvas_width - 1))
                    href = max(0, min(int(href), self.canvas_height - 1))
                    stroke_color_init = list(self.target_img[0, :, href, wref]) + [1.]
                    path_group = pydiffvg.ShapeGroup(
                        shape_ids=torch.tensor([len(self.shapes) - 1]),
                        fill_color=None,
                        stroke_color=torch.FloatTensor(stroke_color_init)
                    )
                    self.shape_groups.append(path_group)
                    self.cur_shape_groups.append(path_group)
        else:
            num_paths_exists = 0
            if self.path_svg is not None and pathlib.Path(self.path_svg).exists():
                print(f"-> init svg from `{self.path_svg}` ...")

                self.canvas_width, self.canvas_height, self.shapes, self.shape_groups = self.load_svg(self.path_svg)
                # if you want to add more strokes to existing ones and optimize on all of them
                num_paths_exists = len(self.shapes)

                self.cur_shapes = self.shapes
                self.cur_shape_groups = self.shape_groups

            for i in range(num_paths_exists, num_paths):
                if self.style == 'iconography':
                    path = self.get_path()
                    self.shapes.append(path)
                    self.cur_shapes.append(path)

                    wref, href = self.color_ref
                    wref = max(0, min(int(wref), self.canvas_width - 1))
                    href = max(0, min(int(href), self.canvas_height - 1))
                    fill_color_init = list(self.target_img[0, :, href, wref]) + [1.]
                    path_group = pydiffvg.ShapeGroup(
                        shape_ids=torch.tensor([self.strokes_counter - 1]),
                        fill_color=torch.FloatTensor(fill_color_init),
                        stroke_color=None
                    )
                    self.shape_groups.append(path_group)
                    self.cur_shape_groups.append(path_group)

                elif self.style in ['pixelart', 'low-poly']:
                    for j in range(num_paths):
                        path = self.get_path(coord=[i, j])
                        self.shapes.append(path)
                        self.cur_shapes.append(path)

                        fill_color_init = torch.FloatTensor(np.random.uniform(size=[4]))
                        fill_color_init[-1] = 1.0
                        path_group = pydiffvg.ShapeGroup(
                            shape_ids=torch.LongTensor([i * num_paths + j]),
                            fill_color=fill_color_init,
                            stroke_color=None,
                        )
                        self.shape_groups.append(path_group)
                        self.cur_shape_groups.append(path_group)

                elif self.style in ['sketch', 'ink']:
                    path = self.get_path()
                    self.shapes.append(path)
                    self.cur_shapes.append(path)

                    stroke_color_init = [0.0, 0.0, 0.0] + [random.random()]
                    stroke_color_init = torch.FloatTensor(stroke_color_init)

                    path_group = pydiffvg.ShapeGroup(
                        shape_ids=torch.tensor([len(self.shapes) - 1]),
                        fill_color=None,
                        stroke_color=stroke_color_init
                    )
                    self.shape_groups.append(path_group)
                    self.cur_shape_groups.append(path_group)

                elif self.style in ['painting']:
                    path = self.get_path()
                    self.shapes.append(path)
                    self.cur_shapes.append(path)

                    if self.color_ref is None:
                        stroke_color_val = np.random.uniform(size=[4])
                        stroke_color_val[-1] = 1.0
                        stroke_color_init = torch.FloatTensor(stroke_color_val)
                    else:
                        wref, href = self.color_ref
                        wref = max(0, min(int(wref), self.canvas_width - 1))
                        href = max(0, min(int(href), self.canvas_height - 1))
                        stroke_color_init = list(self.target_img[0, :, href, wref]) + [1.]
                        stroke_color_init = torch.FloatTensor(stroke_color_init)

                    path_group = pydiffvg.ShapeGroup(
                        shape_ids=torch.tensor([len(self.shapes) - 1]),
                        fill_color=None,
                        stroke_color=stroke_color_init
                    )
                    self.shape_groups.append(path_group)
                    self.cur_shape_groups.append(path_group)

            self.optimize_flag = [True for i in range(len(self.shapes))]

        img = self.get_image()
        return img

    def get_image(self, step: int = 0):
        img = self.render_warp(step)
        img = img[:, :, 3:4] * img[:, :, :3] + self.para_bg * (1 - img[:, :, 3:4])
        img = img.unsqueeze(0)  # convert img from HWC to NCHW
        img = img.permute(0, 3, 1, 2).to(self.device)  # NHWC -> NCHW
        return img

    def get_path(self, coord=None):
        num_segments = self.num_segments

        points = []
        if self.style == 'iconography':
            # init segment
            if self.segment_init == 'circle':
                num_control_points = [2] * num_segments
                radius = self.radius if self.radius is not None else np.random.uniform(0.5, 1)
                if self.pos_init_method is not None:
                    center = self.pos_init_method()
                else:
                    center = (random.random(), random.random())
                bias = center
                self.color_ref = copy.deepcopy(bias)

                avg_degree = 360 / (num_segments * 3)
                for i in range(0, num_segments * 3):
                    point = (
                        np.cos(np.deg2rad(i * avg_degree)), np.sin(np.deg2rad(i * avg_degree))
                    )
                    points.append(point)

                points = torch.FloatTensor(points) * radius + torch.FloatTensor(bias).unsqueeze(dim=0)
            elif self.segment_init == 'random':
                num_control_points = [2] * num_segments
                p0 = self.pos_init_method()
                self.color_ref = copy.deepcopy(p0)
                points.append(p0)

                for j in range(num_segments):
                    radius = self.radius
                    p1 = (p0[0] + radius * np.random.uniform(-0.5, 0.5),
                          p0[1] + radius * np.random.uniform(-0.5, 0.5))
                    p2 = (p1[0] + radius * np.random.uniform(-0.5, 0.5),
                          p1[1] + radius * np.random.uniform(-0.5, 0.5))
                    p3 = (p2[0] + radius * np.random.uniform(-0.5, 0.5),
                          p2[1] + radius * np.random.uniform(-0.5, 0.5))
                    points.append(p1)
                    points.append(p2)
                    if j < num_segments - 1:
                        points.append(p3)
                        p0 = p3
                points = torch.FloatTensor(points)
            else:
                raise NotImplementedError(f"{self.segment_init} is not exists.")

            path = pydiffvg.Path(
                num_control_points=torch.LongTensor(num_control_points),
                points=points,
                stroke_width=torch.tensor(0.0),
                is_closed=True
            )

        elif self.style in ['sketch', 'painting', 'ink']:
            num_control_points = torch.zeros(num_segments, dtype=torch.long) + 2
            points = []
            p0 = [random.random(), random.random()]
            points.append(p0)

            # select color by first point coordinate
            color_ref = copy.deepcopy(p0)
            color_ref[0] *= self.canvas_width
            color_ref[1] *= self.canvas_height
            self.color_ref = color_ref

            for j in range(num_segments):
                radius = 0.1
                p1 = (p0[0] + radius * (random.random() - 0.5), p0[1] + radius * (random.random() - 0.5))
                p2 = (p1[0] + radius * (random.random() - 0.5), p1[1] + radius * (random.random() - 0.5))
                p3 = (p2[0] + radius * (random.random() - 0.5), p2[1] + radius * (random.random() - 0.5))
                points.append(p1)
                points.append(p2)
                points.append(p3)
                p0 = p3
            points = torch.tensor(points).to(self.device)
            points[:, 0] *= self.canvas_width
            points[:, 1] *= self.canvas_height

            path = pydiffvg.Path(num_control_points=torch.LongTensor(num_control_points),
                                 points=points,
                                 stroke_width=torch.tensor(float(self.stroke_width)),
                                 is_closed=False)

        elif self.style in ['pixelart', 'low-poly']:
            x = coord[0] * self.pixel_per_grid
            y = coord[1] * self.pixel_per_grid
            points = torch.FloatTensor([
                [x, y],
                [x + self.pixel_per_grid, y],
                [x + self.pixel_per_grid, y + self.pixel_per_grid],
                [x, y + self.pixel_per_grid]
            ]).to(self.device)
            path = pydiffvg.Polygon(points=points,
                                    stroke_width=torch.tensor(0.0),
                                    is_closed=True)

        self.strokes_counter += 1
        return path

    def clip_curve_shape(self):
        if self.style in ['sketch', 'ink']:
            for group in self.shape_groups:
                group.stroke_color.data[:3].clamp_(0., 0.)  # to force black stroke
                group.stroke_color.data[-1].clamp_(0., 1.)  # clip alpha
        else:
            for group in self.shape_groups:
                if group.stroke_color is not None:
                    group.stroke_color.data.clamp_(0.0, 1.0)  # clip rgba
                if group.fill_color is not None:
                    group.fill_color.data.clamp_(0.0, 1.0)  # clip rgba

    def reinitialize_paths(self,
                           reinit_path: bool = False,
                           opacity_threshold: float = None,
                           area_threshold: float = None,
                           fpath: pathlib.Path = None):
        """
        reinitialize paths, also known as 'Reinitializing paths' in VectorFusion paper.

        Args:
            reinit_path: whether to reinitialize paths or not.
            opacity_threshold: Threshold of opacity.
            area_threshold: Threshold of the closed polygon area.
            fpath: The path to save the reinitialized SVG.
        """
        if not reinit_path:
            return
        if self.style not in ['iconography', 'low-poly', 'painting']:
            return

        def get_keys_below_threshold(my_dict, threshold):
            keys_below_threshold = [key for key, value in my_dict.items() if value < threshold]
            return keys_below_threshold

        select_path_ids_by_opc = []
        select_path_ids_by_area = []
        if self.style in ['iconography', 'low-poly']:
            # re-init by opacity_threshold
            if opacity_threshold != 0 and opacity_threshold is not None:
                opacity_record_ = {group.shape_ids.item(): group.fill_color[-1].item()
                                   for group in self.cur_shape_groups}
                # print("-> opacity_record: ", opacity_record_)
                print("-> opacity_record: ", [f"{k}: {v:.3f}" for k, v in opacity_record_.items()])
                select_path_ids_by_opc = get_keys_below_threshold(opacity_record_, opacity_threshold)
                print("select_path_ids_by_opc: ", select_path_ids_by_opc)

            # remove path by area_threshold
            if area_threshold != 0 and area_threshold is not None:
                area_records = [Polygon(shape.points.detach().cpu().numpy()).area for shape in self.cur_shapes]
                # print("-> area_records: ", area_records)
                print("-> area_records: ", ['%.2f' % i for i in area_records])
                for i, shape in enumerate(self.cur_shapes):
                    points_ = shape.points.detach().cpu().numpy()
                    if Polygon(points_).area < area_threshold:
                        select_path_ids_by_area.append(shape.id)
                print("select_path_ids_by_area: ", select_path_ids_by_area)

        elif self.style in ['painting']:
            # re-init by opacity_threshold
            if opacity_threshold != 0 and opacity_threshold is not None:
                opacity_record_ = {group.shape_ids.item(): group.stroke_color[-1].item()
                                   for group in self.cur_shape_groups}
                # print("-> opacity_record: ", opacity_record_)
                print("-> opacity_record: ", [f"{k}: {v:.3f}" for k, v in opacity_record_.items()])
                select_path_ids_by_opc = get_keys_below_threshold(opacity_record_, opacity_threshold)
                print("select_path_ids_by_opc: ", select_path_ids_by_opc)

        # re-init paths
        reinit_union = list(set(select_path_ids_by_opc + select_path_ids_by_area))
        if len(reinit_union) > 0:
            for i, path in enumerate(self.cur_shapes):
                if path.id in reinit_union:
                    coord = [i, i] if self.style == 'low-poly' else None
                    self.cur_shapes[i] = self.get_path(coord=coord)
            for i, group in enumerate(self.cur_shape_groups):
                shp_ids = group.shape_ids.cpu().numpy().tolist()
                if set(shp_ids).issubset(reinit_union):
                    if self.style in ['iconography', 'low-poly']:
                        fill_color_init = torch.FloatTensor(np.random.uniform(size=[4]))
                        fill_color_init[-1] = 1.0
                        self.cur_shape_groups[i] = pydiffvg.ShapeGroup(
                            shape_ids=torch.tensor(list(shp_ids)),
                            fill_color=fill_color_init,
                            stroke_color=None)
                    elif self.style in ['painting']:
                        stroke_color_init = torch.FloatTensor(np.random.uniform(size=[4]))
                        stroke_color_init[-1] = 1.0
                        self.cur_shape_groups[i] = pydiffvg.ShapeGroup(
                            shape_ids=torch.tensor([len(self.shapes) - 1]),
                            fill_color=None,
                            stroke_color=stroke_color_init
                        )
            # save reinit svg
            self.pretty_save_svg(fpath)

        print("-" * 40)

    def calc_distance_weight(self, loss_weight_keep):
        shapes_forsdf = copy.deepcopy(self.cur_shapes)
        shape_groups_forsdf = copy.deepcopy(self.cur_shape_groups)
        for si in shapes_forsdf:
            si.stroke_width = torch.FloatTensor([0]).to(self.device)
        for sg_idx, sgi in enumerate(shape_groups_forsdf):
            sgi.fill_color = torch.FloatTensor([1, 1, 1, 1]).to(self.device)
            sgi.shape_ids = torch.LongTensor([sg_idx]).to(self.device)

        sargs_forsdf = pydiffvg.RenderFunction.serialize_scene(
            self.canvas_width, self.canvas_height, shapes_forsdf, shape_groups_forsdf
        )
        _render = pydiffvg.RenderFunction.apply
        with torch.no_grad():
            im_forsdf = _render(self.canvas_width,  # width
                                self.canvas_height,  # height
                                2,  # num_samples_x
                                2,  # num_samples_y
                                0,  # seed
                                None,
                                *sargs_forsdf)

        # use alpha channel is a trick to get 0-1 image
        im_forsdf = (im_forsdf[:, :, 3]).detach().cpu().numpy()
        loss_weight = get_sdf(im_forsdf, normalize='to1')
        loss_weight += loss_weight_keep
        loss_weight = np.clip(loss_weight, 0, 1)
        loss_weight = torch.FloatTensor(loss_weight).to(self.device)
        return loss_weight

    def set_point_parameters(self, id_delta=0):
        self.point_vars = []
        for i, path in enumerate(self.cur_shapes):
            path.id = i + id_delta  # set point id
            path.points.requires_grad = True
            self.point_vars.append(path.points)

    def get_point_parameters(self):
        return self.point_vars

    def set_color_parameters(self):
        self.color_vars = []
        for i, group in enumerate(self.cur_shape_groups):
            if group.fill_color is not None:
                group.fill_color.requires_grad = True
                self.color_vars.append(group.fill_color)
            if group.stroke_color is not None:
                group.stroke_color.requires_grad = True
                self.color_vars.append(group.stroke_color)

    def get_color_parameters(self):
        return self.color_vars

    def set_width_parameters(self):
        # stroke`s width optimization
        self.width_vars = []
        for i, path in enumerate(self.shapes):
            path.stroke_width.requires_grad = True
            self.width_vars.append(path.stroke_width)

    def get_width_parameters(self):
        return self.width_vars

    def pretty_save_svg(self, filename, width=None, height=None, shapes=None, shape_groups=None):
        width = self.canvas_width if width is None else width
        height = self.canvas_height if height is None else height
        shapes = self.shapes if shapes is None else shapes
        shape_groups = self.shape_groups if shape_groups is None else shape_groups

        self.save_svg(filename, width, height, shapes, shape_groups, use_gamma=False, background=None)

    def load_svg(self, path_svg):
        canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(path_svg)
        return canvas_width, canvas_height, shapes, shape_groups


def get_sdf(phi, **kwargs):
    import skfmm  # local import

    phi = (phi - 0.5) * 2
    if (phi.max() <= 0) or (phi.min() >= 0):
        return np.zeros(phi.shape).astype(np.float32)
    sd = skfmm.distance(phi, dx=1)

    flip_negative = kwargs.get('flip_negative', True)
    if flip_negative:
        sd = np.abs(sd)

    truncate = kwargs.get('truncate', 10)
    sd = np.clip(sd, -truncate, truncate)
    # print(f"max sd value is: {sd.max()}")

    zero2max = kwargs.get('zero2max', True)
    if zero2max and flip_negative:
        sd = sd.max() - sd
    elif zero2max:
        raise ValueError

    normalize = kwargs.get('normalize', 'sum')
    if normalize == 'sum':
        sd /= sd.sum()
    elif normalize == 'to1':
        sd /= sd.max()
    return sd


class SparseCoordInit:

    def __init__(self, pred, gt, format='[bs x c x 2D]', quantile_interval=200, nodiff_thres=0.1):
        if torch.is_tensor(pred):
            pred = pred.detach().cpu().numpy()
        if torch.is_tensor(gt):
            gt = gt.detach().cpu().numpy()

        if format == '[bs x c x 2D]':
            self.map = ((pred[0] - gt[0]) ** 2).sum(0)
            self.reference_gt = copy.deepcopy(np.transpose(gt[0], (1, 2, 0)))
        elif format == ['[2D x c]']:
            self.map = (np.abs(pred - gt)).sum(-1)
            self.reference_gt = copy.deepcopy(gt[0])
        else:
            raise ValueError

        # OptionA: Zero too small errors to avoid the error too small deadloop
        self.map[self.map < nodiff_thres] = 0
        quantile_interval = np.linspace(0., 1., quantile_interval)
        quantized_interval = np.quantile(self.map, quantile_interval)
        # remove redundant
        quantized_interval = np.unique(quantized_interval)
        quantized_interval = sorted(quantized_interval[1:-1])
        self.map = np.digitize(self.map, quantized_interval, right=False)
        self.map = np.clip(self.map, 0, 255).astype(np.uint8)
        self.idcnt = {}
        for idi in sorted(np.unique(self.map)):
            self.idcnt[idi] = (self.map == idi).sum()
        # remove smallest one to remove the correct region
        self.idcnt.pop(min(self.idcnt.keys()))

    def __call__(self):
        if len(self.idcnt) == 0:
            h, w = self.map.shape
            return [np.random.uniform(0, 1) * w, np.random.uniform(0, 1) * h]

        target_id = max(self.idcnt, key=self.idcnt.get)
        _, component, cstats, ccenter = cv2.connectedComponentsWithStats(
            (self.map == target_id).astype(np.uint8),
            connectivity=4
        )
        # remove cid = 0, it is the invalid area
        csize = [ci[-1] for ci in cstats[1:]]
        target_cid = csize.index(max(csize)) + 1
        center = ccenter[target_cid][::-1]
        coord = np.stack(np.where(component == target_cid)).T
        dist = np.linalg.norm(coord - center, axis=1)
        target_coord_id = np.argmin(dist)
        coord_h, coord_w = coord[target_coord_id]

        # replace_sampling
        self.idcnt[target_id] -= max(csize)
        if self.idcnt[target_id] == 0:
            self.idcnt.pop(target_id)
        self.map[component == target_cid] = 0
        return [coord_w, coord_h]


class RandomCoordInit:
    def __init__(self, canvas_width, canvas_height):
        self.canvas_width, self.canvas_height = canvas_width, canvas_height

    def __call__(self):
        w, h = self.canvas_width, self.canvas_height
        return [np.random.uniform(0, 1) * w, np.random.uniform(0, 1) * h]


class NaiveCoordInit:
    def __init__(self, pred, gt, format='[bs x c x 2D]', replace_sampling=True):
        if isinstance(pred, torch.Tensor):
            pred = pred.detach().cpu().numpy()
        if isinstance(gt, torch.Tensor):
            gt = gt.detach().cpu().numpy()

        if format == '[bs x c x 2D]':
            self.map = ((pred[0] - gt[0]) ** 2).sum(0)
        elif format == ['[2D x c]']:
            self.map = ((pred - gt) ** 2).sum(-1)
        else:
            raise ValueError
        self.replace_sampling = replace_sampling

    def __call__(self):
        coord = np.where(self.map == self.map.max())
        coord_h, coord_w = coord[0][0], coord[1][0]
        if self.replace_sampling:
            self.map[coord_h, coord_w] = -1
        return [coord_w, coord_h]


class PainterOptimizer:

    def __init__(self,
                 renderer: Painter,
                 style: str,
                 num_iter: int,
                 lr_config: omegaconf.DictConfig,
                 trainable_bg: bool = False):
        self.renderer = renderer
        self.num_iter = num_iter
        self.trainable_bg = trainable_bg
        self.lr_config = lr_config

        # set optimized params via style
        self.optim_point, self.optim_color, self.optim_width = {
            "iconography": (True, True, False),
            "pixelart": (False, True, False),
            "low-poly": (True, True, False),
            "sketch": (True, True, False),
            "ink": (True, True, True),
            "painting": (True, True, True)
        }.get(style, (False, False, False))
        self.optim_bg = trainable_bg

        # set lr schedule
        schedule_cfg = lr_config.schedule
        if schedule_cfg.name == 'linear':
            self.lr_lambda = LinearDecayWithKeepLRLambda(init_lr=lr_config.point,
                                                         keep_ratio=schedule_cfg.keep_ratio,
                                                         decay_every=self.num_iter,
                                                         decay_ratio=schedule_cfg.decay_ratio)
        elif schedule_cfg.name == 'cosine':
            self.lr_lambda = CosineWithWarmupLRLambda(num_steps=self.num_iter,
                                                      warmup_steps=schedule_cfg.warmup_steps,
                                                      warmup_start_lr=schedule_cfg.warmup_start_lr,
                                                      warmup_end_lr=schedule_cfg.warmup_end_lr,
                                                      cosine_end_lr=schedule_cfg.cosine_end_lr)
        else:
            print(f"{schedule_cfg.name} is not support.")
            self.lr_lambda = None

        self.point_optimizer = None
        self.color_optimizer = None
        self.width_optimizer = None
        self.bg_optimizer = None
        self.point_scheduler = None

    def init_optimizers(self, pid_delta: int = 0):
        # optimizer
        optim_cfg = self.lr_config.optim
        optim_name = optim_cfg.name

        params = {}
        if self.optim_point:
            self.renderer.set_point_parameters(pid_delta)
            params['point'] = self.renderer.get_point_parameters()
            self.point_optimizer = get_optimizer(optim_name, params['point'], self.lr_config.point, optim_cfg)

        if self.optim_color:
            self.renderer.set_color_parameters()
            params['color'] = self.renderer.get_color_parameters()
            self.color_optimizer = get_optimizer(optim_name, params['color'], self.lr_config.color, optim_cfg)

        if self.optim_width:
            self.renderer.set_width_parameters()
            params['width'] = self.renderer.get_width_parameters()
            if len(params['width']) > 0:
                self.width_optimizer = get_optimizer(optim_name, params['width'], self.lr_config.width, optim_cfg)

        if self.optim_bg:
            self.renderer.para_bg.requires_grad = True
            self.bg_optimizer = get_optimizer(optim_name, self.renderer.para_bg, self.lr_config.bg, optim_cfg)

        # lr schedule
        if self.lr_lambda is not None and self.optim_point:
            self.point_scheduler = LambdaLR(self.point_optimizer, lr_lambda=self.lr_lambda, last_epoch=-1)

    def update_lr(self):
        if self.point_scheduler is not None:
            self.point_scheduler.step()

    def zero_grad_(self):
        if self.point_optimizer is not None:
            self.point_optimizer.zero_grad()
        if self.color_optimizer is not None:
            self.color_optimizer.zero_grad()
        if self.width_optimizer is not None:
            self.width_optimizer.zero_grad()
        if self.bg_optimizer is not None:
            self.bg_optimizer.zero_grad()

    def step_(self):
        if self.point_optimizer is not None:
            self.point_optimizer.step()
        if self.color_optimizer is not None:
            self.color_optimizer.step()
        if self.width_optimizer is not None:
            self.width_optimizer.step()
        if self.bg_optimizer is not None:
            self.bg_optimizer.step()

    def get_lr(self) -> Dict:
        lr = {}
        if self.point_optimizer is not None:
            lr['pnt'] = self.point_optimizer.param_groups[0]['lr']
        if self.color_optimizer is not None:
            lr['clr'] = self.color_optimizer.param_groups[0]['lr']
        if self.width_optimizer is not None:
            lr['wd'] = self.width_optimizer.param_groups[0]['lr']
        if self.bg_optimizer is not None:
            lr['bg'] = self.bg_optimizer.param_groups[0]['lr']
        return lr


class LinearDecayWithKeepLRLambda:
    """apply in LIVE stage"""

    def __init__(self, init_lr, keep_ratio, decay_every, decay_ratio):
        self.init_lr = init_lr
        self.keep_ratio = keep_ratio
        self.decay_every = decay_every
        self.decay_ratio = decay_ratio

    def __call__(self, n):
        if n < self.keep_ratio * self.decay_every:
            return self.init_lr

        decay_time = n // self.decay_every
        decay_step = n % self.decay_every
        lr_s = self.decay_ratio ** decay_time
        lr_e = self.decay_ratio ** (decay_time + 1)
        r = decay_step / self.decay_every
        lr = lr_s * (1 - r) + lr_e * r
        return lr


class CosineWithWarmupLRLambda:
    """apply in fine-tuning stage"""

    def __init__(self, num_steps, warmup_steps, warmup_start_lr, warmup_end_lr, cosine_end_lr):
        self.n_steps = num_steps
        self.n_warmup = warmup_steps
        self.warmup_start_lr = warmup_start_lr
        self.warmup_end_lr = warmup_end_lr
        self.cosine_end_lr = cosine_end_lr

    def __call__(self, n):
        if n < self.n_warmup:
            # linearly warmup
            return self.warmup_start_lr + (n / self.n_warmup) * (self.warmup_end_lr - self.warmup_start_lr)
        else:
            # cosine decayed schedule
            return self.cosine_end_lr + 0.5 * (self.warmup_end_lr - self.cosine_end_lr) * (
                    1 + math.cos(math.pi * (n - self.n_warmup) / (self.n_steps - self.n_warmup)))