File size: 22,916 Bytes
966ae59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# -*- coding: utf-8 -*-
# Copyright (c) XiMing Xing. All rights reserved.
# Author: XiMing Xing
# Description:

from typing import Callable, List, Optional, Union, Tuple

import torch
import torch.nn.functional as F
from torch.cuda.amp import custom_bwd, custom_fwd
from torchvision import transforms
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipeline


class LSDSSDXLPipeline(StableDiffusionXLPipeline):
    r"""
    Pipeline for text-to-image generation using Stable Diffusion XL.
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
        feature_extractor ([`CLIPFeatureExtractor`]):
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
    """
    _optional_components = ["safety_checker", "feature_extractor"]

    @torch.no_grad()
    def __call__(
            self,
            prompt: Union[str, List[str]],
            prompt_2: Optional[Union[str, List[str]]] = None,
            height: Optional[int] = None,
            width: Optional[int] = None,
            num_inference_steps: int = 50,
            denoising_end: Optional[float] = None,
            guidance_scale: float = 5.0,
            negative_prompt: Optional[Union[str, List[str]]] = None,
            negative_prompt_2: Optional[Union[str, List[str]]] = None,
            num_images_per_prompt: Optional[int] = 1,
            eta: float = 0.0,
            generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
            latents: Optional[torch.FloatTensor] = None,
            output_type: Optional[str] = "pil",
            return_dict: bool = True,
            callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
            callback_steps: Optional[int] = 1,
            original_size: Optional[Tuple[int, int]] = None,
            crops_coords_top_left: Tuple[int, int] = (0, 0),
            target_size: Optional[Tuple[int, int]] = None,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in both text-encoders
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            denoising_end (`float`, *optional*):
                When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
                completed before it is intentionally prematurely terminated. As a result, the returned sample will
                still retain a substantial amount of noise as determined by the discrete timesteps selected by the
                scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
                "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
                Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
            guidance_scale (`float`, *optional*, defaults to 5.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
                of a plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
            original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
                `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
                explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                For most cases, `target_size` should be set to the desired height and width of the generated image. If
                not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
                section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).

        Examples:

        Returns:
            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is a list with the generated images.
        """

        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        original_size = original_size or (height, width)
        target_size = target_size or (height, width)

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(prompt, prompt_2, height, width, callback_steps)

        # 2. Define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        (
            text_embeddings,
            negative_text_embeddings,
            pooled_text_embeddings,
            negative_pooled_text_embeddings,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
        )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        try:
            num_channels_latents = self.unet.config.in_channels
        except Exception or Warning:
            num_channels_latents = self.unet.in_channels

        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            text_embeddings.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. inherit TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Prepare added time ids & embeddings
        add_text_embeddings = pooled_text_embeddings
        add_time_ids = self._get_add_time_ids(
            original_size, crops_coords_top_left, target_size, dtype=text_embeddings.dtype
        )

        if do_classifier_free_guidance:
            text_embeddings = torch.cat([negative_text_embeddings, text_embeddings], dim=0)
            add_text_embeddings = torch.cat([negative_pooled_text_embeddings, add_text_embeddings], dim=0)
            add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)

        text_embeddings = text_embeddings.to(device)
        add_text_embeddings = add_text_embeddings.to(device)
        add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)

        # 8. Denoising loop
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)

        # 8.1 Apply denoising_end
        if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1:
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
                    - (denoising_end * self.scheduler.config.num_train_timesteps)
                )
            )
            num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
            timesteps = timesteps[:num_inference_steps]

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                added_cond_kwargs = {"text_embeds": add_text_embeddings, "time_ids": add_time_ids}
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=text_embeddings,
                    added_cond_kwargs=added_cond_kwargs
                ).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        # 9. Post-processing

        # The decode_latents method is deprecated and has been removed in sdxl
        # image = self.decode_latents(latents)

        # make sure the VAE is in float32 mode, as it overflows in float16
        if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
            self.upcast_vae()
            latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        else:
            image = latents
            return StableDiffusionXLPipelineOutput(images=image)

        # apply watermark if available
        if self.watermark is not None:
            image = self.watermark.apply_watermark(image)

        image = self.image_processor.postprocess(image, output_type=output_type)

        if not return_dict:
            return (image,)

        return StableDiffusionXLPipelineOutput(images=image)

    def encode_(self, images):
        images = (2 * images - 1).clamp(-1.0, 1.0)  # images: [B, 3, H, W]

        # encode images
        latents = self.vae.encode(images).latent_dist.sample()
        latents = self.vae.config.scaling_factor * latents

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma

        return latents

    def x_augment(self, x: torch.Tensor, img_size: int = 1024):
        augment_compose = transforms.Compose([
            transforms.RandomPerspective(distortion_scale=0.5, p=0.7),
            transforms.RandomCrop(size=(img_size, img_size), pad_if_needed=True, padding_mode='reflect')
        ])
        return augment_compose(x)

    def score_distillation_sampling(self,
                                    pred_rgb: torch.Tensor,
                                    im_size: int,
                                    prompt: Union[List, str],
                                    prompt_2: Optional[Union[List, str]] = None,
                                    height: Optional[int] = None,
                                    width: Optional[int] = None,
                                    negative_prompt: Union[List, str] = None,
                                    negative_prompt_2: Optional[Union[List, str]] = None,
                                    guidance_scale: float = 100,
                                    as_latent: bool = False,
                                    grad_scale: float = 1,
                                    t_range: Union[List[float], Tuple[float]] = (0.05, 0.95),
                                    original_size: Optional[Tuple[int, int]] = None,
                                    crops_coords_top_left: Tuple[int, int] = (0, 0),
                                    target_size: Optional[Tuple[int, int]] = None):
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        original_size = original_size or (height, width)
        target_size = target_size or (height, width)

        batch_size = 1 if isinstance(prompt, str) else len(prompt)

        num_train_timesteps = self.scheduler.config.num_train_timesteps
        min_step = int(num_train_timesteps * t_range[0])
        max_step = int(num_train_timesteps * t_range[1])
        alphas = self.scheduler.alphas_cumprod.to(self.device)  # for convenience

        # input augmentation
        pred_rgb_a = self.x_augment(pred_rgb, im_size)

        # interp to im_size x im_size to be fed into vae.
        if as_latent:
            latents = F.interpolate(pred_rgb_a, (128, 128), mode='bilinear', align_corners=False) * 2 - 1
        else:
            # encode image into latents with vae, requires grad!
            latents = self.encode_(pred_rgb_a)

        #  Encode input prompt
        num_images_per_prompt = 1  # the number of images to generate per prompt
        do_classifier_free_guidance = guidance_scale > 1.0
        (
            text_embeddings,
            negative_text_embeddings,
            pooled_text_embeddings,
            negative_pooled_text_embeddings,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            device=self.device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
        )

        # timestep ~ U(0.05, 0.95) to avoid very high/low noise level
        t = torch.randint(min_step, max_step + 1, [1], dtype=torch.long, device=self.device)

        # 7. Prepare added time ids & embeddings
        add_text_embeddings = pooled_text_embeddings
        add_time_ids = self._get_add_time_ids(
            original_size, crops_coords_top_left, target_size, dtype=text_embeddings.dtype
        )

        if do_classifier_free_guidance:
            text_embeddings = torch.cat([negative_text_embeddings, text_embeddings], dim=0)
            add_text_embeddings = torch.cat([negative_pooled_text_embeddings, add_text_embeddings], dim=0)
            add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)

        text_embeddings = text_embeddings.to(self.device)
        add_text_embeddings = add_text_embeddings.to(self.device)
        add_time_ids = add_time_ids.to(self.device).repeat(batch_size * num_images_per_prompt, 1)

        # predict the noise residual with unet, stop gradient
        with torch.no_grad():
            # add noise
            noise = torch.randn_like(latents)
            latents_noisy = self.scheduler.add_noise(latents, noise, t)
            # pred noise
            latent_model_input = torch.cat([latents_noisy] * 2) if do_classifier_free_guidance else latents_noisy
            # predict the noise residual
            added_cond_kwargs = {"text_embeds": add_text_embeddings, "time_ids": add_time_ids}
            noise_pred = self.unet(
                latent_model_input,
                t,
                encoder_hidden_states=text_embeddings,
                added_cond_kwargs=added_cond_kwargs
            ).sample

        # perform guidance (high scale from paper!)
        if do_classifier_free_guidance:
            noise_pred_uncond, noise_pred_pos = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_pos - noise_pred_uncond)

        # w(t), sigma_t^2
        w = (1 - alphas[t])
        grad = grad_scale * w * (noise_pred - noise)
        grad = torch.nan_to_num(grad)

        # since we omitted an item in grad, we need to use the custom function to specify the gradient
        loss = SpecifyGradient.apply(latents, grad)

        return loss, grad.mean()


class SpecifyGradient(torch.autograd.Function):

    @staticmethod
    @custom_fwd
    def forward(ctx, input_tensor, gt_grad):
        ctx.save_for_backward(gt_grad)
        # we return a dummy value 1, which will be scaled by amp's scaler so we get the scale in backward.
        return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype)

    @staticmethod
    @custom_bwd
    def backward(ctx, grad_scale):
        gt_grad, = ctx.saved_tensors
        gt_grad = gt_grad * grad_scale
        return gt_grad, None