File size: 15,341 Bytes
966ae59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# -*- coding: utf-8 -*-
# Copyright (c) XiMing Xing. All rights reserved.
# Author: XiMing Xing
# Description:

from typing import Callable, List, Optional, Union, Tuple

import torch
import torch.nn.functional as F
from torch.cuda.amp import custom_bwd, custom_fwd
from torchvision import transforms
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline


class LSDSPipeline(StableDiffusionPipeline):
    r"""
    Pipeline for text-to-image generation using Stable Diffusion.
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
        feature_extractor ([`CLIPFeatureExtractor`]):
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
    """
    _optional_components = ["safety_checker", "feature_extractor"]

    @torch.no_grad()
    def __call__(
            self,
            prompt: Union[str, List[str]],
            height: Optional[int] = None,
            width: Optional[int] = None,
            num_inference_steps: int = 50,
            guidance_scale: float = 7.5,
            negative_prompt: Optional[Union[str, List[str]]] = None,
            num_images_per_prompt: Optional[int] = 1,
            eta: float = 0.0,
            generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
            latents: Optional[torch.FloatTensor] = None,
            output_type: Optional[str] = "pil",
            return_dict: bool = True,
            callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
            callback_steps: Optional[int] = 1,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """

        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(prompt, height, width, callback_steps)

        # 2. Define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        text_embeddings = self._encode_prompt(
            prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
        )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        try:
            num_channels_latents = self.unet.config.in_channels
        except Exception or Warning:
            num_channels_latents = self.unet.in_channels

        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            text_embeddings.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. inherit TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        # 8. Post-processing
        image = self.decode_latents(latents)

        # image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        # do_denormalize = [True] * image.shape[0]
        # image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        # 9. Run safety checker
        has_nsfw_concept = None
        # image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype)

        # 10. Convert to PIL
        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

    def encode_(self, images):
        images = (2 * images - 1).clamp(-1.0, 1.0)  # images: [B, 3, H, W]

        # encode images
        latents = self.vae.encode(images).latent_dist.sample()
        latents = self.vae.config.scaling_factor * latents

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma

        return latents

    def x_augment(self, x: torch.Tensor, img_size: int = 512):
        augment_compose = transforms.Compose([
            transforms.RandomPerspective(distortion_scale=0.5, p=0.7),
            transforms.RandomCrop(size=(img_size, img_size), pad_if_needed=True, padding_mode='reflect')
        ])
        return augment_compose(x)

    def score_distillation_sampling(self,
                                    pred_rgb: torch.Tensor,
                                    im_size: int,
                                    prompt: Union[List, str],
                                    negative_prompt: Union[List, str] = None,
                                    guidance_scale: float = 100,
                                    as_latent: bool = False,
                                    grad_scale: float = 1,
                                    t_range: Union[List[float], Tuple[float]] = (0.05, 0.95)):
        num_train_timesteps = self.scheduler.config.num_train_timesteps
        min_step = int(num_train_timesteps * t_range[0])
        max_step = int(num_train_timesteps * t_range[1])
        alphas = self.scheduler.alphas_cumprod.to(self.device)  # for convenience

        # input augmentation
        pred_rgb_a = self.x_augment(pred_rgb, im_size)

        # the input is intercepted to im_size x im_size and then fed to the vae
        if as_latent:
            latents = F.interpolate(pred_rgb_a, (64, 64), mode='bilinear', align_corners=False) * 2 - 1
        else:
            # encode image into latents with vae, requires grad!
            latents = self.encode_(pred_rgb_a)

        #  Encode input prompt
        num_images_per_prompt = 1  # the number of images to generate per prompt
        do_classifier_free_guidance = guidance_scale > 1.0
        text_embeddings = self._encode_prompt(
            prompt, self.device, num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt=negative_prompt,
        )

        # timestep ~ U(0.05, 0.95) to avoid very high/low noise level
        t = torch.randint(min_step, max_step + 1, [1], dtype=torch.long, device=self.device)

        # predict the noise residual with unet, stop gradient
        with torch.no_grad():
            # add noise
            noise = torch.randn_like(latents)
            latents_noisy = self.scheduler.add_noise(latents, noise, t)
            # pred noise
            latent_model_input = torch.cat([latents_noisy] * 2) if do_classifier_free_guidance else latents_noisy
            noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

        # perform guidance (high scale from paper!)
        if do_classifier_free_guidance:
            noise_pred_uncond, noise_pred_pos = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_pos - noise_pred_uncond)

        # w(t), sigma_t^2
        w = (1 - alphas[t])
        grad = grad_scale * w * (noise_pred - noise)
        grad = torch.nan_to_num(grad)

        # since we omitted an item in grad, we need to use the custom function to specify the gradient
        loss = SpecifyGradient.apply(latents, grad)

        return loss, grad.mean()


class SpecifyGradient(torch.autograd.Function):

    @staticmethod
    @custom_fwd
    def forward(ctx, input_tensor, gt_grad):
        ctx.save_for_backward(gt_grad)
        # we return a dummy value 1, which will be scaled by amp's scaler so we get the scale in backward.
        return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype)

    @staticmethod
    @custom_bwd
    def backward(ctx, grad_scale):
        gt_grad, = ctx.saved_tensors
        gt_grad = gt_grad * grad_scale
        return gt_grad, None