Spaces:
Running
Running
File size: 34,570 Bytes
966ae59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 |
# -*- coding: utf-8 -*-
# Copyright (c) XiMing Xing. All rights reserved.
# Author: XiMing Xing
# Description:
import math
import copy
import random
import pathlib
from typing import Dict
from shapely.geometry.polygon import Polygon
import omegaconf
import cv2
import numpy as np
import pydiffvg
import torch
from torch.optim.lr_scheduler import LambdaLR
from pytorch_svgrender.diffvg_warp import DiffVGState
from pytorch_svgrender.libs.solver.optim import get_optimizer
class Painter(DiffVGState):
def __init__(
self,
diffvg_cfg: omegaconf.DictConfig,
style: str,
num_segments: int,
segment_init: str,
radius: int = 20,
canvas_size: int = 600,
n_grid: int = 32,
trainable_bg: bool = False,
stroke_width: int = 3,
path_svg=None,
device=None,
):
super().__init__(device, print_timing=diffvg_cfg.print_timing,
canvas_width=canvas_size, canvas_height=canvas_size)
self.style = style
self.num_segments = num_segments
self.segment_init = segment_init
self.radius = radius
"""pixelart params"""
self.n_grid = n_grid # divide the canvas into n grids
self.pixel_per_grid = self.canvas_width // self.n_grid
"""sketch params"""
self.stroke_width = stroke_width
"""iconography params"""
self.color_ref = None
self.path_svg = path_svg
self.optimize_flag = []
self.strokes_counter = 0 # counts the number of calls to "get_path"
# Background color
self.para_bg = torch.tensor([1., 1., 1.], requires_grad=trainable_bg, device=self.device)
self.target_img = None
self.pos_init_method = None
def component_wise_path_init(self, gt, pred, init_type: str = 'sparse'):
# set target image
self.target_img = gt
if init_type == 'random':
self.pos_init_method = RandomCoordInit(self.canvas_height, self.canvas_width)
elif init_type == 'sparse':
# when initialized for the first time, the render result is None
if pred is None:
pred = self.para_bg.view(1, -1, 1, 1).repeat(1, 1, self.canvas_height, self.canvas_width)
# then pred is the render result
self.pos_init_method = SparseCoordInit(pred, gt)
elif init_type == 'naive':
if pred is None:
pred = self.para_bg.view(1, -1, 1, 1).repeat(1, 1, self.canvas_height, self.canvas_width)
self.pos_init_method = NaiveCoordInit(pred, gt)
else:
raise NotImplementedError(f"'{init_type}' is not support.")
def init_image(self, stage=0, num_paths=0):
self.cur_shapes, self.cur_shape_groups = [], []
# or init svg by pydiffvg
if self.style in ['pixelart', 'low-poly']: # update path definition
num_paths = self.n_grid
if stage > 0:
# Noting: if multi stages training than add new strokes on existing ones
# don't optimize on previous strokes
self.optimize_flag = [False for i in range(len(self.shapes))]
for i in range(num_paths):
if self.style == 'iconography':
path = self.get_path()
self.shapes.append(path)
self.cur_shapes.append(path)
fill_color_init = torch.FloatTensor(np.random.uniform(size=[4]))
fill_color_init[-1] = 1.0
path_group = pydiffvg.ShapeGroup(
shape_ids=torch.tensor([self.strokes_counter - 1]),
fill_color=fill_color_init,
stroke_color=None
)
self.shape_groups.append(path_group)
self.cur_shape_groups.append(path_group)
self.optimize_flag.append(True)
elif self.style in ['pixelart', 'low-poly']:
for j in range(num_paths):
path = self.get_path(coord=[i, j])
self.shapes.append(path)
self.cur_shapes.append(path)
fill_color_init = torch.FloatTensor(np.random.uniform(size=[4]))
fill_color_init[-1] = 1.0
path_group = pydiffvg.ShapeGroup(
shape_ids=torch.LongTensor([i * num_paths + j]),
fill_color=fill_color_init,
stroke_color=None,
)
self.shape_groups.append(path_group)
self.cur_shape_groups.append(path_group)
self.optimize_flag.append(True)
elif self.style in ['ink', 'sketch']:
path = self.get_path()
self.shapes.append(path)
self.cur_shapes.append(path)
stroke_color_init = [0.0, 0.0, 0.0] + [random.random()]
stroke_color_init = torch.FloatTensor(stroke_color_init)
path_group = pydiffvg.ShapeGroup(
shape_ids=torch.tensor([len(self.shapes) - 1]),
fill_color=None,
stroke_color=stroke_color_init
)
self.shape_groups.append(path_group)
self.cur_shape_groups.append(path_group)
elif self.style == 'painting':
path = self.get_path()
self.shapes.append(path)
self.cur_shapes.append(path)
wref, href = self.color_ref
wref = max(0, min(int(wref), self.canvas_width - 1))
href = max(0, min(int(href), self.canvas_height - 1))
stroke_color_init = list(self.target_img[0, :, href, wref]) + [1.]
path_group = pydiffvg.ShapeGroup(
shape_ids=torch.tensor([len(self.shapes) - 1]),
fill_color=None,
stroke_color=torch.FloatTensor(stroke_color_init)
)
self.shape_groups.append(path_group)
self.cur_shape_groups.append(path_group)
else:
num_paths_exists = 0
if self.path_svg is not None and pathlib.Path(self.path_svg).exists():
print(f"-> init svg from `{self.path_svg}` ...")
self.canvas_width, self.canvas_height, self.shapes, self.shape_groups = self.load_svg(self.path_svg)
# if you want to add more strokes to existing ones and optimize on all of them
num_paths_exists = len(self.shapes)
self.cur_shapes = self.shapes
self.cur_shape_groups = self.shape_groups
for i in range(num_paths_exists, num_paths):
if self.style == 'iconography':
path = self.get_path()
self.shapes.append(path)
self.cur_shapes.append(path)
wref, href = self.color_ref
wref = max(0, min(int(wref), self.canvas_width - 1))
href = max(0, min(int(href), self.canvas_height - 1))
fill_color_init = list(self.target_img[0, :, href, wref]) + [1.]
path_group = pydiffvg.ShapeGroup(
shape_ids=torch.tensor([self.strokes_counter - 1]),
fill_color=torch.FloatTensor(fill_color_init),
stroke_color=None
)
self.shape_groups.append(path_group)
self.cur_shape_groups.append(path_group)
elif self.style in ['pixelart', 'low-poly']:
for j in range(num_paths):
path = self.get_path(coord=[i, j])
self.shapes.append(path)
self.cur_shapes.append(path)
fill_color_init = torch.FloatTensor(np.random.uniform(size=[4]))
fill_color_init[-1] = 1.0
path_group = pydiffvg.ShapeGroup(
shape_ids=torch.LongTensor([i * num_paths + j]),
fill_color=fill_color_init,
stroke_color=None,
)
self.shape_groups.append(path_group)
self.cur_shape_groups.append(path_group)
elif self.style in ['sketch', 'ink']:
path = self.get_path()
self.shapes.append(path)
self.cur_shapes.append(path)
stroke_color_init = [0.0, 0.0, 0.0] + [random.random()]
stroke_color_init = torch.FloatTensor(stroke_color_init)
path_group = pydiffvg.ShapeGroup(
shape_ids=torch.tensor([len(self.shapes) - 1]),
fill_color=None,
stroke_color=stroke_color_init
)
self.shape_groups.append(path_group)
self.cur_shape_groups.append(path_group)
elif self.style in ['painting']:
path = self.get_path()
self.shapes.append(path)
self.cur_shapes.append(path)
if self.color_ref is None:
stroke_color_val = np.random.uniform(size=[4])
stroke_color_val[-1] = 1.0
stroke_color_init = torch.FloatTensor(stroke_color_val)
else:
wref, href = self.color_ref
wref = max(0, min(int(wref), self.canvas_width - 1))
href = max(0, min(int(href), self.canvas_height - 1))
stroke_color_init = list(self.target_img[0, :, href, wref]) + [1.]
stroke_color_init = torch.FloatTensor(stroke_color_init)
path_group = pydiffvg.ShapeGroup(
shape_ids=torch.tensor([len(self.shapes) - 1]),
fill_color=None,
stroke_color=stroke_color_init
)
self.shape_groups.append(path_group)
self.cur_shape_groups.append(path_group)
self.optimize_flag = [True for i in range(len(self.shapes))]
img = self.get_image()
return img
def get_image(self, step: int = 0):
img = self.render_warp(step)
img = img[:, :, 3:4] * img[:, :, :3] + self.para_bg * (1 - img[:, :, 3:4])
img = img.unsqueeze(0) # convert img from HWC to NCHW
img = img.permute(0, 3, 1, 2).to(self.device) # NHWC -> NCHW
return img
def get_path(self, coord=None):
num_segments = self.num_segments
points = []
if self.style == 'iconography':
# init segment
if self.segment_init == 'circle':
num_control_points = [2] * num_segments
radius = self.radius if self.radius is not None else np.random.uniform(0.5, 1)
if self.pos_init_method is not None:
center = self.pos_init_method()
else:
center = (random.random(), random.random())
bias = center
self.color_ref = copy.deepcopy(bias)
avg_degree = 360 / (num_segments * 3)
for i in range(0, num_segments * 3):
point = (
np.cos(np.deg2rad(i * avg_degree)), np.sin(np.deg2rad(i * avg_degree))
)
points.append(point)
points = torch.FloatTensor(points) * radius + torch.FloatTensor(bias).unsqueeze(dim=0)
elif self.segment_init == 'random':
num_control_points = [2] * num_segments
p0 = self.pos_init_method()
self.color_ref = copy.deepcopy(p0)
points.append(p0)
for j in range(num_segments):
radius = self.radius
p1 = (p0[0] + radius * np.random.uniform(-0.5, 0.5),
p0[1] + radius * np.random.uniform(-0.5, 0.5))
p2 = (p1[0] + radius * np.random.uniform(-0.5, 0.5),
p1[1] + radius * np.random.uniform(-0.5, 0.5))
p3 = (p2[0] + radius * np.random.uniform(-0.5, 0.5),
p2[1] + radius * np.random.uniform(-0.5, 0.5))
points.append(p1)
points.append(p2)
if j < num_segments - 1:
points.append(p3)
p0 = p3
points = torch.FloatTensor(points)
else:
raise NotImplementedError(f"{self.segment_init} is not exists.")
path = pydiffvg.Path(
num_control_points=torch.LongTensor(num_control_points),
points=points,
stroke_width=torch.tensor(0.0),
is_closed=True
)
elif self.style in ['sketch', 'painting', 'ink']:
num_control_points = torch.zeros(num_segments, dtype=torch.long) + 2
points = []
p0 = [random.random(), random.random()]
points.append(p0)
# select color by first point coordinate
color_ref = copy.deepcopy(p0)
color_ref[0] *= self.canvas_width
color_ref[1] *= self.canvas_height
self.color_ref = color_ref
for j in range(num_segments):
radius = 0.1
p1 = (p0[0] + radius * (random.random() - 0.5), p0[1] + radius * (random.random() - 0.5))
p2 = (p1[0] + radius * (random.random() - 0.5), p1[1] + radius * (random.random() - 0.5))
p3 = (p2[0] + radius * (random.random() - 0.5), p2[1] + radius * (random.random() - 0.5))
points.append(p1)
points.append(p2)
points.append(p3)
p0 = p3
points = torch.tensor(points).to(self.device)
points[:, 0] *= self.canvas_width
points[:, 1] *= self.canvas_height
path = pydiffvg.Path(num_control_points=torch.LongTensor(num_control_points),
points=points,
stroke_width=torch.tensor(float(self.stroke_width)),
is_closed=False)
elif self.style in ['pixelart', 'low-poly']:
x = coord[0] * self.pixel_per_grid
y = coord[1] * self.pixel_per_grid
points = torch.FloatTensor([
[x, y],
[x + self.pixel_per_grid, y],
[x + self.pixel_per_grid, y + self.pixel_per_grid],
[x, y + self.pixel_per_grid]
]).to(self.device)
path = pydiffvg.Polygon(points=points,
stroke_width=torch.tensor(0.0),
is_closed=True)
self.strokes_counter += 1
return path
def clip_curve_shape(self):
if self.style in ['sketch', 'ink']:
for group in self.shape_groups:
group.stroke_color.data[:3].clamp_(0., 0.) # to force black stroke
group.stroke_color.data[-1].clamp_(0., 1.) # clip alpha
else:
for group in self.shape_groups:
if group.stroke_color is not None:
group.stroke_color.data.clamp_(0.0, 1.0) # clip rgba
if group.fill_color is not None:
group.fill_color.data.clamp_(0.0, 1.0) # clip rgba
def reinitialize_paths(self,
reinit_path: bool = False,
opacity_threshold: float = None,
area_threshold: float = None,
fpath: pathlib.Path = None):
"""
reinitialize paths, also known as 'Reinitializing paths' in VectorFusion paper.
Args:
reinit_path: whether to reinitialize paths or not.
opacity_threshold: Threshold of opacity.
area_threshold: Threshold of the closed polygon area.
fpath: The path to save the reinitialized SVG.
"""
if not reinit_path:
return
if self.style not in ['iconography', 'low-poly', 'painting']:
return
def get_keys_below_threshold(my_dict, threshold):
keys_below_threshold = [key for key, value in my_dict.items() if value < threshold]
return keys_below_threshold
select_path_ids_by_opc = []
select_path_ids_by_area = []
if self.style in ['iconography', 'low-poly']:
# re-init by opacity_threshold
if opacity_threshold != 0 and opacity_threshold is not None:
opacity_record_ = {group.shape_ids.item(): group.fill_color[-1].item()
for group in self.cur_shape_groups}
# print("-> opacity_record: ", opacity_record_)
print("-> opacity_record: ", [f"{k}: {v:.3f}" for k, v in opacity_record_.items()])
select_path_ids_by_opc = get_keys_below_threshold(opacity_record_, opacity_threshold)
print("select_path_ids_by_opc: ", select_path_ids_by_opc)
# remove path by area_threshold
if area_threshold != 0 and area_threshold is not None:
area_records = [Polygon(shape.points.detach().cpu().numpy()).area for shape in self.cur_shapes]
# print("-> area_records: ", area_records)
print("-> area_records: ", ['%.2f' % i for i in area_records])
for i, shape in enumerate(self.cur_shapes):
points_ = shape.points.detach().cpu().numpy()
if Polygon(points_).area < area_threshold:
select_path_ids_by_area.append(shape.id)
print("select_path_ids_by_area: ", select_path_ids_by_area)
elif self.style in ['painting']:
# re-init by opacity_threshold
if opacity_threshold != 0 and opacity_threshold is not None:
opacity_record_ = {group.shape_ids.item(): group.stroke_color[-1].item()
for group in self.cur_shape_groups}
# print("-> opacity_record: ", opacity_record_)
print("-> opacity_record: ", [f"{k}: {v:.3f}" for k, v in opacity_record_.items()])
select_path_ids_by_opc = get_keys_below_threshold(opacity_record_, opacity_threshold)
print("select_path_ids_by_opc: ", select_path_ids_by_opc)
# re-init paths
reinit_union = list(set(select_path_ids_by_opc + select_path_ids_by_area))
if len(reinit_union) > 0:
for i, path in enumerate(self.cur_shapes):
if path.id in reinit_union:
coord = [i, i] if self.style == 'low-poly' else None
self.cur_shapes[i] = self.get_path(coord=coord)
for i, group in enumerate(self.cur_shape_groups):
shp_ids = group.shape_ids.cpu().numpy().tolist()
if set(shp_ids).issubset(reinit_union):
if self.style in ['iconography', 'low-poly']:
fill_color_init = torch.FloatTensor(np.random.uniform(size=[4]))
fill_color_init[-1] = 1.0
self.cur_shape_groups[i] = pydiffvg.ShapeGroup(
shape_ids=torch.tensor(list(shp_ids)),
fill_color=fill_color_init,
stroke_color=None)
elif self.style in ['painting']:
stroke_color_init = torch.FloatTensor(np.random.uniform(size=[4]))
stroke_color_init[-1] = 1.0
self.cur_shape_groups[i] = pydiffvg.ShapeGroup(
shape_ids=torch.tensor([len(self.shapes) - 1]),
fill_color=None,
stroke_color=stroke_color_init
)
# save reinit svg
self.pretty_save_svg(fpath)
print("-" * 40)
def calc_distance_weight(self, loss_weight_keep):
shapes_forsdf = copy.deepcopy(self.cur_shapes)
shape_groups_forsdf = copy.deepcopy(self.cur_shape_groups)
for si in shapes_forsdf:
si.stroke_width = torch.FloatTensor([0]).to(self.device)
for sg_idx, sgi in enumerate(shape_groups_forsdf):
sgi.fill_color = torch.FloatTensor([1, 1, 1, 1]).to(self.device)
sgi.shape_ids = torch.LongTensor([sg_idx]).to(self.device)
sargs_forsdf = pydiffvg.RenderFunction.serialize_scene(
self.canvas_width, self.canvas_height, shapes_forsdf, shape_groups_forsdf
)
_render = pydiffvg.RenderFunction.apply
with torch.no_grad():
im_forsdf = _render(self.canvas_width, # width
self.canvas_height, # height
2, # num_samples_x
2, # num_samples_y
0, # seed
None,
*sargs_forsdf)
# use alpha channel is a trick to get 0-1 image
im_forsdf = (im_forsdf[:, :, 3]).detach().cpu().numpy()
loss_weight = get_sdf(im_forsdf, normalize='to1')
loss_weight += loss_weight_keep
loss_weight = np.clip(loss_weight, 0, 1)
loss_weight = torch.FloatTensor(loss_weight).to(self.device)
return loss_weight
def set_point_parameters(self, id_delta=0):
self.point_vars = []
for i, path in enumerate(self.cur_shapes):
path.id = i + id_delta # set point id
path.points.requires_grad = True
self.point_vars.append(path.points)
def get_point_parameters(self):
return self.point_vars
def set_color_parameters(self):
self.color_vars = []
for i, group in enumerate(self.cur_shape_groups):
if group.fill_color is not None:
group.fill_color.requires_grad = True
self.color_vars.append(group.fill_color)
if group.stroke_color is not None:
group.stroke_color.requires_grad = True
self.color_vars.append(group.stroke_color)
def get_color_parameters(self):
return self.color_vars
def set_width_parameters(self):
# stroke`s width optimization
self.width_vars = []
for i, path in enumerate(self.shapes):
path.stroke_width.requires_grad = True
self.width_vars.append(path.stroke_width)
def get_width_parameters(self):
return self.width_vars
def pretty_save_svg(self, filename, width=None, height=None, shapes=None, shape_groups=None):
width = self.canvas_width if width is None else width
height = self.canvas_height if height is None else height
shapes = self.shapes if shapes is None else shapes
shape_groups = self.shape_groups if shape_groups is None else shape_groups
self.save_svg(filename, width, height, shapes, shape_groups, use_gamma=False, background=None)
def load_svg(self, path_svg):
canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(path_svg)
return canvas_width, canvas_height, shapes, shape_groups
def get_sdf(phi, **kwargs):
import skfmm # local import
phi = (phi - 0.5) * 2
if (phi.max() <= 0) or (phi.min() >= 0):
return np.zeros(phi.shape).astype(np.float32)
sd = skfmm.distance(phi, dx=1)
flip_negative = kwargs.get('flip_negative', True)
if flip_negative:
sd = np.abs(sd)
truncate = kwargs.get('truncate', 10)
sd = np.clip(sd, -truncate, truncate)
# print(f"max sd value is: {sd.max()}")
zero2max = kwargs.get('zero2max', True)
if zero2max and flip_negative:
sd = sd.max() - sd
elif zero2max:
raise ValueError
normalize = kwargs.get('normalize', 'sum')
if normalize == 'sum':
sd /= sd.sum()
elif normalize == 'to1':
sd /= sd.max()
return sd
class SparseCoordInit:
def __init__(self, pred, gt, format='[bs x c x 2D]', quantile_interval=200, nodiff_thres=0.1):
if torch.is_tensor(pred):
pred = pred.detach().cpu().numpy()
if torch.is_tensor(gt):
gt = gt.detach().cpu().numpy()
if format == '[bs x c x 2D]':
self.map = ((pred[0] - gt[0]) ** 2).sum(0)
self.reference_gt = copy.deepcopy(np.transpose(gt[0], (1, 2, 0)))
elif format == ['[2D x c]']:
self.map = (np.abs(pred - gt)).sum(-1)
self.reference_gt = copy.deepcopy(gt[0])
else:
raise ValueError
# OptionA: Zero too small errors to avoid the error too small deadloop
self.map[self.map < nodiff_thres] = 0
quantile_interval = np.linspace(0., 1., quantile_interval)
quantized_interval = np.quantile(self.map, quantile_interval)
# remove redundant
quantized_interval = np.unique(quantized_interval)
quantized_interval = sorted(quantized_interval[1:-1])
self.map = np.digitize(self.map, quantized_interval, right=False)
self.map = np.clip(self.map, 0, 255).astype(np.uint8)
self.idcnt = {}
for idi in sorted(np.unique(self.map)):
self.idcnt[idi] = (self.map == idi).sum()
# remove smallest one to remove the correct region
self.idcnt.pop(min(self.idcnt.keys()))
def __call__(self):
if len(self.idcnt) == 0:
h, w = self.map.shape
return [np.random.uniform(0, 1) * w, np.random.uniform(0, 1) * h]
target_id = max(self.idcnt, key=self.idcnt.get)
_, component, cstats, ccenter = cv2.connectedComponentsWithStats(
(self.map == target_id).astype(np.uint8),
connectivity=4
)
# remove cid = 0, it is the invalid area
csize = [ci[-1] for ci in cstats[1:]]
target_cid = csize.index(max(csize)) + 1
center = ccenter[target_cid][::-1]
coord = np.stack(np.where(component == target_cid)).T
dist = np.linalg.norm(coord - center, axis=1)
target_coord_id = np.argmin(dist)
coord_h, coord_w = coord[target_coord_id]
# replace_sampling
self.idcnt[target_id] -= max(csize)
if self.idcnt[target_id] == 0:
self.idcnt.pop(target_id)
self.map[component == target_cid] = 0
return [coord_w, coord_h]
class RandomCoordInit:
def __init__(self, canvas_width, canvas_height):
self.canvas_width, self.canvas_height = canvas_width, canvas_height
def __call__(self):
w, h = self.canvas_width, self.canvas_height
return [np.random.uniform(0, 1) * w, np.random.uniform(0, 1) * h]
class NaiveCoordInit:
def __init__(self, pred, gt, format='[bs x c x 2D]', replace_sampling=True):
if isinstance(pred, torch.Tensor):
pred = pred.detach().cpu().numpy()
if isinstance(gt, torch.Tensor):
gt = gt.detach().cpu().numpy()
if format == '[bs x c x 2D]':
self.map = ((pred[0] - gt[0]) ** 2).sum(0)
elif format == ['[2D x c]']:
self.map = ((pred - gt) ** 2).sum(-1)
else:
raise ValueError
self.replace_sampling = replace_sampling
def __call__(self):
coord = np.where(self.map == self.map.max())
coord_h, coord_w = coord[0][0], coord[1][0]
if self.replace_sampling:
self.map[coord_h, coord_w] = -1
return [coord_w, coord_h]
class PainterOptimizer:
def __init__(self,
renderer: Painter,
style: str,
num_iter: int,
lr_config: omegaconf.DictConfig,
trainable_bg: bool = False):
self.renderer = renderer
self.num_iter = num_iter
self.trainable_bg = trainable_bg
self.lr_config = lr_config
# set optimized params via style
self.optim_point, self.optim_color, self.optim_width = {
"iconography": (True, True, False),
"pixelart": (False, True, False),
"low-poly": (True, True, False),
"sketch": (True, True, False),
"ink": (True, True, True),
"painting": (True, True, True)
}.get(style, (False, False, False))
self.optim_bg = trainable_bg
# set lr schedule
schedule_cfg = lr_config.schedule
if schedule_cfg.name == 'linear':
self.lr_lambda = LinearDecayWithKeepLRLambda(init_lr=lr_config.point,
keep_ratio=schedule_cfg.keep_ratio,
decay_every=self.num_iter,
decay_ratio=schedule_cfg.decay_ratio)
elif schedule_cfg.name == 'cosine':
self.lr_lambda = CosineWithWarmupLRLambda(num_steps=self.num_iter,
warmup_steps=schedule_cfg.warmup_steps,
warmup_start_lr=schedule_cfg.warmup_start_lr,
warmup_end_lr=schedule_cfg.warmup_end_lr,
cosine_end_lr=schedule_cfg.cosine_end_lr)
else:
print(f"{schedule_cfg.name} is not support.")
self.lr_lambda = None
self.point_optimizer = None
self.color_optimizer = None
self.width_optimizer = None
self.bg_optimizer = None
self.point_scheduler = None
def init_optimizers(self, pid_delta: int = 0):
# optimizer
optim_cfg = self.lr_config.optim
optim_name = optim_cfg.name
params = {}
if self.optim_point:
self.renderer.set_point_parameters(pid_delta)
params['point'] = self.renderer.get_point_parameters()
self.point_optimizer = get_optimizer(optim_name, params['point'], self.lr_config.point, optim_cfg)
if self.optim_color:
self.renderer.set_color_parameters()
params['color'] = self.renderer.get_color_parameters()
self.color_optimizer = get_optimizer(optim_name, params['color'], self.lr_config.color, optim_cfg)
if self.optim_width:
self.renderer.set_width_parameters()
params['width'] = self.renderer.get_width_parameters()
if len(params['width']) > 0:
self.width_optimizer = get_optimizer(optim_name, params['width'], self.lr_config.width, optim_cfg)
if self.optim_bg:
self.renderer.para_bg.requires_grad = True
self.bg_optimizer = get_optimizer(optim_name, self.renderer.para_bg, self.lr_config.bg, optim_cfg)
# lr schedule
if self.lr_lambda is not None and self.optim_point:
self.point_scheduler = LambdaLR(self.point_optimizer, lr_lambda=self.lr_lambda, last_epoch=-1)
def update_lr(self):
if self.point_scheduler is not None:
self.point_scheduler.step()
def zero_grad_(self):
if self.point_optimizer is not None:
self.point_optimizer.zero_grad()
if self.color_optimizer is not None:
self.color_optimizer.zero_grad()
if self.width_optimizer is not None:
self.width_optimizer.zero_grad()
if self.bg_optimizer is not None:
self.bg_optimizer.zero_grad()
def step_(self):
if self.point_optimizer is not None:
self.point_optimizer.step()
if self.color_optimizer is not None:
self.color_optimizer.step()
if self.width_optimizer is not None:
self.width_optimizer.step()
if self.bg_optimizer is not None:
self.bg_optimizer.step()
def get_lr(self) -> Dict:
lr = {}
if self.point_optimizer is not None:
lr['pnt'] = self.point_optimizer.param_groups[0]['lr']
if self.color_optimizer is not None:
lr['clr'] = self.color_optimizer.param_groups[0]['lr']
if self.width_optimizer is not None:
lr['wd'] = self.width_optimizer.param_groups[0]['lr']
if self.bg_optimizer is not None:
lr['bg'] = self.bg_optimizer.param_groups[0]['lr']
return lr
class LinearDecayWithKeepLRLambda:
"""apply in LIVE stage"""
def __init__(self, init_lr, keep_ratio, decay_every, decay_ratio):
self.init_lr = init_lr
self.keep_ratio = keep_ratio
self.decay_every = decay_every
self.decay_ratio = decay_ratio
def __call__(self, n):
if n < self.keep_ratio * self.decay_every:
return self.init_lr
decay_time = n // self.decay_every
decay_step = n % self.decay_every
lr_s = self.decay_ratio ** decay_time
lr_e = self.decay_ratio ** (decay_time + 1)
r = decay_step / self.decay_every
lr = lr_s * (1 - r) + lr_e * r
return lr
class CosineWithWarmupLRLambda:
"""apply in fine-tuning stage"""
def __init__(self, num_steps, warmup_steps, warmup_start_lr, warmup_end_lr, cosine_end_lr):
self.n_steps = num_steps
self.n_warmup = warmup_steps
self.warmup_start_lr = warmup_start_lr
self.warmup_end_lr = warmup_end_lr
self.cosine_end_lr = cosine_end_lr
def __call__(self, n):
if n < self.n_warmup:
# linearly warmup
return self.warmup_start_lr + (n / self.n_warmup) * (self.warmup_end_lr - self.warmup_start_lr)
else:
# cosine decayed schedule
return self.cosine_end_lr + 0.5 * (self.warmup_end_lr - self.cosine_end_lr) * (
1 + math.cos(math.pi * (n - self.n_warmup) / (self.n_steps - self.n_warmup)))
|