File size: 16,993 Bytes
966ae59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import os
import pathlib

import numpy as np
import omegaconf
import pydiffvg
import torch
from torch.optim.lr_scheduler import LambdaLR

from methods.diffvg_warp import DiffVGState
from .ttf import font_string_to_beziers, write_letter_svg


class Painter(DiffVGState):

    def __init__(self, args, imsize, device):
        super(Painter, self).__init__(device=device, use_gpu=True, canvas_width=imsize, canvas_height=imsize)
        self.args = args
        self.optim_color = self.args.optim_color

    def init_shape(self, path_svg, seed=0):
        assert pathlib.Path(path_svg).exists(), f"{path_svg} is not exist!"
        print(f"-> init svg from `{path_svg}` ...")
        # 1. load svg from path
        canvas_width, canvas_height, self.shapes, self.shape_groups = self.load_svg(path_svg)

        # init color
        if self.optim_color:
            fill_color_init = torch.FloatTensor(np.random.uniform(size=[4]))
            fill_color_init[-1] = 1.0

            for group in self.shape_groups:
                group.fill_color = fill_color_init.to(self.device)

        # 2. set learnable parameters
        self.set_point_parameters()
        if self.optim_color:
            self.set_color_parameters()

        img = self.render_warp(seed)
        img = img[:, :, 3:4] * img[:, :, :3] + \
              torch.ones(img.shape[0], img.shape[1], 3, device=self.device) * (1 - img[:, :, 3:4])
        img = img[:, :, :3]
        img = img.unsqueeze(0)  # convert img from HWC to NCHW
        img = img.permute(0, 3, 1, 2).to(self.device)  # NHWC -> NCHW
        return img

    def get_image(self, step: int = 0):
        img = self.render_warp(step)
        img = img[:, :, 3:4] * img[:, :, :3] + \
              torch.ones(img.shape[0], img.shape[1], 3, device=self.device) * (1 - img[:, :, 3:4])
        img = img[:, :, :3]
        img = img.unsqueeze(0)  # convert img from HWC to NCHW
        img = img.permute(0, 3, 1, 2).to(self.device)  # NHWC -> NCHW
        return img

    def clip_curve_shape(self):
        if self.optim_color:
            for group in self.shape_groups:
                group.fill_color.data.clamp_(0.0, 1.0)
                group.fill_color.data[-1] = 1.0

    def render_warp(self, seed=0):
        scene_args = pydiffvg.RenderFunction.serialize_scene(
            self.canvas_width, self.canvas_height, self.shapes, self.shape_groups
        )
        _render = pydiffvg.RenderFunction.apply
        img = _render(self.canvas_width,  # width
                      self.canvas_height,  # height
                      2,  # num_samples_x
                      2,  # num_samples_y
                      seed,  # seed
                      None,
                      *scene_args)
        return img

    def set_point_parameters(self):  # shape location optimization
        self.point_vars = []
        for i, path in enumerate(self.shapes):
            path.points.requires_grad = True
            self.point_vars.append(path.points)

    def get_point_parameters(self):
        return self.point_vars

    def set_color_parameters(self):
        self.color_vars = []
        for i, group in enumerate(self.shape_groups):
            if group.fill_color is not None:
                group.fill_color.requires_grad = True
                self.color_vars.append(group.fill_color)
            if group.stroke_color is not None:
                group.stroke_color.requires_grad = True
                self.color_vars.append(group.stroke_color)

    def get_color_parameters(self):
        return self.color_vars

    def get_width_parameters(self):
        return self.width_vars

    def preprocess_font(self, word, letter, level_of_cc=1, font_path=None, init_path=None):
        if level_of_cc == 0:
            target_cp = None
        else:
            target_cp = {"A": 120, "B": 120, "C": 100, "D": 100,
                         "E": 120, "F": 120, "G": 120, "H": 120,
                         "I": 35, "J": 80, "K": 100, "L": 80,
                         "M": 100, "N": 100, "O": 100, "P": 120,
                         "Q": 120, "R": 130, "S": 110, "T": 90,
                         "U": 100, "V": 100, "W": 100, "X": 130,
                         "Y": 120, "Z": 120,
                         "a": 120, "b": 120, "c": 100, "d": 100,
                         "e": 120, "f": 120, "g": 120, "h": 120,
                         "i": 35, "j": 80, "k": 100, "l": 80,
                         "m": 100, "n": 100, "o": 100, "p": 120,
                         "q": 120, "r": 130, "s": 110, "t": 90,
                         "u": 100, "v": 100, "w": 100, "x": 130,
                         "y": 120, "z": 120}
            target_cp = {k: v * level_of_cc for k, v in target_cp.items()}

        print("init_path: ", init_path)

        subdivision_thresh = None
        self.font_string_to_svgs(init_path,
                                 font_path,
                                 word,
                                 target_control=target_cp,
                                 subdivision_thresh=subdivision_thresh)
        self.normalize_letter_size(init_path, font_path, word)

        # optimize two adjacent letters
        print("letter: ", letter)
        if len(letter) > 1:
            subdivision_thresh = None
            self.font_string_to_svgs(init_path,
                                     font_path,
                                     letter,
                                     target_control=target_cp,
                                     subdivision_thresh=subdivision_thresh)
            self.normalize_letter_size(init_path, font_path, letter)

        print("preprocess_font done.")

    def font_string_to_svgs(self, dest_path, font, txt, size=30, spacing=1.0, target_control=None,
                            subdivision_thresh=None):
        fontname = self.args.font
        glyph_beziers = font_string_to_beziers(font, txt, size, spacing, merge=False, target_control=target_control)

        # compute bounding box
        points = np.vstack(sum(glyph_beziers, []))
        lt = np.min(points, axis=0)
        rb = np.max(points, axis=0)
        size = rb - lt

        sizestr = 'width="%.1f" height="%.1f"' % (size[0], size[1])
        boxstr = ' viewBox="%.1f %.1f %.1f %.1f"' % (lt[0], lt[1], size[0], size[1])
        header = '''<?xml version="1.0" encoding="utf-8"?>
        <svg xmlns="http://www.w3.org/2000/svg" xmlns:ev="http://www.w3.org/2001/xml-events" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" baseProfile="full" '''
        header += sizestr
        header += boxstr
        header += '>\n<defs/>\n'

        svg_all = header

        for i, (c, beziers) in enumerate(zip(txt, glyph_beziers)):
            fname, path = write_letter_svg(c, header, fontname, beziers, subdivision_thresh, dest_path)

            num_cp = self.count_cp(fname)
            print(f"Total control point: {num_cp} -- {c}")
            # Add to global svg
            svg_all += path + '</g>\n'

        # Save global svg
        svg_all += '</svg>\n'
        fname = f"{dest_path}/{fontname}_{txt}.svg"
        fname = fname.replace(" ", "_")
        with open(fname, 'w') as f:
            f.write(svg_all)

    def count_cp(self, file_name):
        canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(file_name)
        p_counter = 0
        for path in shapes:
            p_counter += path.points.shape[0]
        return p_counter

    def normalize_letter_size(self, dest_path, font, txt):
        fontname = os.path.splitext(os.path.basename(font))[0]
        for i, c in enumerate(txt):
            fname = f"{dest_path}/{fontname}_{c}.svg"
            fname = fname.replace(" ", "_")
            self.fix_single_svg(fname)

        fname = f"{dest_path}/{fontname}_{txt}.svg"
        fname = fname.replace(" ", "_")
        self.fix_single_svg(fname, all_word=True)

    def fix_single_svg(self, svg_path, all_word=False):
        target_h_letter = 360
        target_canvas_width, target_canvas_height = 600, 600

        canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(svg_path)

        letter_h = canvas_height
        letter_w = canvas_width

        if all_word:
            if letter_w > letter_h:
                scale_canvas_w = target_h_letter / letter_w
                hsize = int(letter_h * scale_canvas_w)
                scale_canvas_h = hsize / letter_h
            else:
                scale_canvas_h = target_h_letter / letter_h
                wsize = int(letter_w * scale_canvas_h)
                scale_canvas_w = wsize / letter_w
        else:
            scale_canvas_h = target_h_letter / letter_h
            wsize = int(letter_w * scale_canvas_h)
            scale_canvas_w = wsize / letter_w

        for num, p in enumerate(shapes):
            p.points[:, 0] = p.points[:, 0] * scale_canvas_w
            p.points[:, 1] = p.points[:, 1] * scale_canvas_h + target_h_letter

        w_min = min([torch.min(p.points[:, 0]) for p in shapes])
        w_max = max([torch.max(p.points[:, 0]) for p in shapes])
        h_min = min([torch.min(p.points[:, 1]) for p in shapes])
        h_max = max([torch.max(p.points[:, 1]) for p in shapes])

        for num, p in enumerate(shapes):
            p.points[:, 0] = p.points[:, 0] + (target_canvas_width / 2) - int(w_min + (w_max - w_min) / 2)
            p.points[:, 1] = p.points[:, 1] + (target_canvas_height / 2) - int(h_min + (h_max - h_min) / 2)

        output_path = f"{svg_path[:-4]}_scaled.svg"
        print("output_path: ", output_path)
        self.save_svg(output_path, target_canvas_width, target_canvas_height, shapes, shape_groups)

    def combine_word(self, word, letter, font, results_dir):
        word_svg_scaled = results_dir / f"{font}_{word}_scaled.svg"
        canvas_width_word, canvas_height_word, shapes_word, shape_groups_word = pydiffvg.svg_to_scene(word_svg_scaled)
        letter_ids = []
        for l in letter:
            letter_ids += self.get_letter_ids(l, word, shape_groups_word)

        w_min, w_max = min([torch.min(shapes_word[ids].points[:, 0]) for ids in letter_ids]), max(
            [torch.max(shapes_word[ids].points[:, 0]) for ids in letter_ids])
        h_min, h_max = min([torch.min(shapes_word[ids].points[:, 1]) for ids in letter_ids]), max(
            [torch.max(shapes_word[ids].points[:, 1]) for ids in letter_ids])

        c_w = (-w_min + w_max) / 2
        c_h = (-h_min + h_max) / 2

        svg_result = results_dir / "final_letter.svg"
        canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(svg_result)

        out_w_min, out_w_max = min([torch.min(p.points[:, 0]) for p in shapes]), max(
            [torch.max(p.points[:, 0]) for p in shapes])
        out_h_min, out_h_max = min([torch.min(p.points[:, 1]) for p in shapes]), max(
            [torch.max(p.points[:, 1]) for p in shapes])

        out_c_w = (-out_w_min + out_w_max) / 2
        out_c_h = (-out_h_min + out_h_max) / 2

        scale_canvas_w = (w_max - w_min) / (out_w_max - out_w_min)
        scale_canvas_h = (h_max - h_min) / (out_h_max - out_h_min)

        if scale_canvas_h > scale_canvas_w:
            wsize = int((out_w_max - out_w_min) * scale_canvas_h)
            scale_canvas_w = wsize / (out_w_max - out_w_min)
            shift_w = -out_c_w * scale_canvas_w + c_w
        else:
            hsize = int((out_h_max - out_h_min) * scale_canvas_w)
            scale_canvas_h = hsize / (out_h_max - out_h_min)
            shift_h = -out_c_h * scale_canvas_h + c_h

        for num, p in enumerate(shapes):
            p.points[:, 0] = p.points[:, 0] * scale_canvas_w
            p.points[:, 1] = p.points[:, 1] * scale_canvas_h
            if scale_canvas_h > scale_canvas_w:
                p.points[:, 0] = p.points[:, 0] - out_w_min * scale_canvas_w + w_min + shift_w
                p.points[:, 1] = p.points[:, 1] - out_h_min * scale_canvas_h + h_min
            else:
                p.points[:, 0] = p.points[:, 0] - out_w_min * scale_canvas_w + w_min
                p.points[:, 1] = p.points[:, 1] - out_h_min * scale_canvas_h + h_min + shift_h

        for j, s in enumerate(letter_ids):
            shapes_word[s] = shapes[j]

        word_letter_result = results_dir / f"{font}_{word}_{letter}.svg"
        self.save_svg(word_letter_result, canvas_width, canvas_height, shapes_word, shape_groups_word)

        render = pydiffvg.RenderFunction.apply
        scene_args = pydiffvg.RenderFunction.serialize_scene(canvas_width,
                                                             canvas_height,
                                                             shapes_word,
                                                             shape_groups_word)
        img = render(canvas_width, canvas_height, 2, 2, 0, None, *scene_args)
        img = img[:, :, 3:4] * img[:, :, :3] + \
              torch.ones(img.shape[0], img.shape[1], 3, device=self.device) * (1 - img[:, :, 3:4])
        img = img[:, :, :3]

        word_letter_result = results_dir / f"{font}_{word}_{letter}.png"
        self.save_image(img, word_letter_result)

    def get_letter_ids(self, letter, word, shape_groups):
        for group, l in zip(shape_groups, word):
            if l == letter:
                return group.shape_ids

    def pretty_save_svg(self, filename, width=None, height=None, shapes=None, shape_groups=None):
        width = self.canvas_width if width is None else width
        height = self.canvas_height if height is None else height
        shapes = self.shapes if shapes is None else shapes
        shape_groups = self.shape_groups if shape_groups is None else shape_groups

        self.save_svg(filename, width, height, shapes, shape_groups, use_gamma=False, background=None)


class PainterOptimizer:

    def __init__(self, renderer: Painter, num_iter: int, lr_cfg: omegaconf.DictConfig, optim_color: bool = False):
        self.renderer = renderer
        self.num_iter = num_iter
        self.lr_cfg = lr_cfg
        self.optim_color = optim_color

        self.point_optimizer = None
        self.color_optimizer = None
        self.scheduler = None

    def init_optimizers(self):
        # optimizer
        point_vars = self.renderer.get_point_parameters()
        self.point_optimizer = torch.optim.Adam(point_vars, lr=self.lr_cfg.point, betas=(0.9, 0.9), eps=1e-6)

        if self.optim_color:
            color_vars = self.renderer.get_color_parameters()
            self.color_optimizer = torch.optim.Adam(color_vars, lr=self.lr_cfg.color, betas=(0.9, 0.9), eps=1e-6)

        # lr schedule
        lr_lambda_fn = lambda step: learning_rate_decay(
            step,
            self.lr_cfg.lr_init,
            self.lr_cfg.lr_final,
            self.num_iter,
            self.lr_cfg.lr_delay_steps,
            self.lr_cfg.lr_delay_mult
        ) / self.lr_cfg.lr_init
        self.scheduler = LambdaLR(self.point_optimizer, lr_lambda=lr_lambda_fn, last_epoch=-1)

    def update_lr(self):
        self.scheduler.step()

    def zero_grad_(self):
        self.point_optimizer.zero_grad()
        if self.optim_color:
            self.color_optimizer.zero_grad()

    def step_(self):
        self.point_optimizer.step()
        if self.optim_color:
            self.color_optimizer.step()

    def get_lr(self):
        return self.point_optimizer.param_groups[0]['lr']


def learning_rate_decay(step,
                        lr_init,
                        lr_final,
                        max_steps,
                        lr_delay_steps=0,
                        lr_delay_mult=1):
    """
    Continuous learning rate decay function.
    The returned rate is lr_init when step=0 and lr_final when step=max_steps, and
    is log-linearly interpolated elsewhere (equivalent to exponential decay).
    If lr_delay_steps>0 then the learning rate will be scaled by some smooth
    function of lr_delay_mult, such that the initial learning rate is
    lr_init*lr_delay_mult at the beginning of optimization but will be eased back
    to the normal learning rate when steps>lr_delay_steps.

    pytorch adaptation of https://github.com/google/mipnerf

    Args:
        step: int, the current optimization step.
        lr_init: float, the initial learning rate.
        lr_final: float, the final learning rate.
        max_steps: int, the number of steps during optimization.
        lr_delay_steps: int, the number of steps to delay the full learning rate.
        lr_delay_mult: float, the multiplier on the rate when delaying it.
    Returns:
        lr: the learning for current step 'step'.
    """
    if lr_delay_steps > 0:
        # A kind of reverse cosine decay.
        delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin(
            0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1))
    else:
        delay_rate = 1.
    t = np.clip(step / max_steps, 0, 1)
    log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
    return delay_rate * log_lerp