Spaces:
Running
Running
File size: 16,993 Bytes
966ae59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import os
import pathlib
import numpy as np
import omegaconf
import pydiffvg
import torch
from torch.optim.lr_scheduler import LambdaLR
from methods.diffvg_warp import DiffVGState
from .ttf import font_string_to_beziers, write_letter_svg
class Painter(DiffVGState):
def __init__(self, args, imsize, device):
super(Painter, self).__init__(device=device, use_gpu=True, canvas_width=imsize, canvas_height=imsize)
self.args = args
self.optim_color = self.args.optim_color
def init_shape(self, path_svg, seed=0):
assert pathlib.Path(path_svg).exists(), f"{path_svg} is not exist!"
print(f"-> init svg from `{path_svg}` ...")
# 1. load svg from path
canvas_width, canvas_height, self.shapes, self.shape_groups = self.load_svg(path_svg)
# init color
if self.optim_color:
fill_color_init = torch.FloatTensor(np.random.uniform(size=[4]))
fill_color_init[-1] = 1.0
for group in self.shape_groups:
group.fill_color = fill_color_init.to(self.device)
# 2. set learnable parameters
self.set_point_parameters()
if self.optim_color:
self.set_color_parameters()
img = self.render_warp(seed)
img = img[:, :, 3:4] * img[:, :, :3] + \
torch.ones(img.shape[0], img.shape[1], 3, device=self.device) * (1 - img[:, :, 3:4])
img = img[:, :, :3]
img = img.unsqueeze(0) # convert img from HWC to NCHW
img = img.permute(0, 3, 1, 2).to(self.device) # NHWC -> NCHW
return img
def get_image(self, step: int = 0):
img = self.render_warp(step)
img = img[:, :, 3:4] * img[:, :, :3] + \
torch.ones(img.shape[0], img.shape[1], 3, device=self.device) * (1 - img[:, :, 3:4])
img = img[:, :, :3]
img = img.unsqueeze(0) # convert img from HWC to NCHW
img = img.permute(0, 3, 1, 2).to(self.device) # NHWC -> NCHW
return img
def clip_curve_shape(self):
if self.optim_color:
for group in self.shape_groups:
group.fill_color.data.clamp_(0.0, 1.0)
group.fill_color.data[-1] = 1.0
def render_warp(self, seed=0):
scene_args = pydiffvg.RenderFunction.serialize_scene(
self.canvas_width, self.canvas_height, self.shapes, self.shape_groups
)
_render = pydiffvg.RenderFunction.apply
img = _render(self.canvas_width, # width
self.canvas_height, # height
2, # num_samples_x
2, # num_samples_y
seed, # seed
None,
*scene_args)
return img
def set_point_parameters(self): # shape location optimization
self.point_vars = []
for i, path in enumerate(self.shapes):
path.points.requires_grad = True
self.point_vars.append(path.points)
def get_point_parameters(self):
return self.point_vars
def set_color_parameters(self):
self.color_vars = []
for i, group in enumerate(self.shape_groups):
if group.fill_color is not None:
group.fill_color.requires_grad = True
self.color_vars.append(group.fill_color)
if group.stroke_color is not None:
group.stroke_color.requires_grad = True
self.color_vars.append(group.stroke_color)
def get_color_parameters(self):
return self.color_vars
def get_width_parameters(self):
return self.width_vars
def preprocess_font(self, word, letter, level_of_cc=1, font_path=None, init_path=None):
if level_of_cc == 0:
target_cp = None
else:
target_cp = {"A": 120, "B": 120, "C": 100, "D": 100,
"E": 120, "F": 120, "G": 120, "H": 120,
"I": 35, "J": 80, "K": 100, "L": 80,
"M": 100, "N": 100, "O": 100, "P": 120,
"Q": 120, "R": 130, "S": 110, "T": 90,
"U": 100, "V": 100, "W": 100, "X": 130,
"Y": 120, "Z": 120,
"a": 120, "b": 120, "c": 100, "d": 100,
"e": 120, "f": 120, "g": 120, "h": 120,
"i": 35, "j": 80, "k": 100, "l": 80,
"m": 100, "n": 100, "o": 100, "p": 120,
"q": 120, "r": 130, "s": 110, "t": 90,
"u": 100, "v": 100, "w": 100, "x": 130,
"y": 120, "z": 120}
target_cp = {k: v * level_of_cc for k, v in target_cp.items()}
print("init_path: ", init_path)
subdivision_thresh = None
self.font_string_to_svgs(init_path,
font_path,
word,
target_control=target_cp,
subdivision_thresh=subdivision_thresh)
self.normalize_letter_size(init_path, font_path, word)
# optimize two adjacent letters
print("letter: ", letter)
if len(letter) > 1:
subdivision_thresh = None
self.font_string_to_svgs(init_path,
font_path,
letter,
target_control=target_cp,
subdivision_thresh=subdivision_thresh)
self.normalize_letter_size(init_path, font_path, letter)
print("preprocess_font done.")
def font_string_to_svgs(self, dest_path, font, txt, size=30, spacing=1.0, target_control=None,
subdivision_thresh=None):
fontname = self.args.font
glyph_beziers = font_string_to_beziers(font, txt, size, spacing, merge=False, target_control=target_control)
# compute bounding box
points = np.vstack(sum(glyph_beziers, []))
lt = np.min(points, axis=0)
rb = np.max(points, axis=0)
size = rb - lt
sizestr = 'width="%.1f" height="%.1f"' % (size[0], size[1])
boxstr = ' viewBox="%.1f %.1f %.1f %.1f"' % (lt[0], lt[1], size[0], size[1])
header = '''<?xml version="1.0" encoding="utf-8"?>
<svg xmlns="http://www.w3.org/2000/svg" xmlns:ev="http://www.w3.org/2001/xml-events" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1" baseProfile="full" '''
header += sizestr
header += boxstr
header += '>\n<defs/>\n'
svg_all = header
for i, (c, beziers) in enumerate(zip(txt, glyph_beziers)):
fname, path = write_letter_svg(c, header, fontname, beziers, subdivision_thresh, dest_path)
num_cp = self.count_cp(fname)
print(f"Total control point: {num_cp} -- {c}")
# Add to global svg
svg_all += path + '</g>\n'
# Save global svg
svg_all += '</svg>\n'
fname = f"{dest_path}/{fontname}_{txt}.svg"
fname = fname.replace(" ", "_")
with open(fname, 'w') as f:
f.write(svg_all)
def count_cp(self, file_name):
canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(file_name)
p_counter = 0
for path in shapes:
p_counter += path.points.shape[0]
return p_counter
def normalize_letter_size(self, dest_path, font, txt):
fontname = os.path.splitext(os.path.basename(font))[0]
for i, c in enumerate(txt):
fname = f"{dest_path}/{fontname}_{c}.svg"
fname = fname.replace(" ", "_")
self.fix_single_svg(fname)
fname = f"{dest_path}/{fontname}_{txt}.svg"
fname = fname.replace(" ", "_")
self.fix_single_svg(fname, all_word=True)
def fix_single_svg(self, svg_path, all_word=False):
target_h_letter = 360
target_canvas_width, target_canvas_height = 600, 600
canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(svg_path)
letter_h = canvas_height
letter_w = canvas_width
if all_word:
if letter_w > letter_h:
scale_canvas_w = target_h_letter / letter_w
hsize = int(letter_h * scale_canvas_w)
scale_canvas_h = hsize / letter_h
else:
scale_canvas_h = target_h_letter / letter_h
wsize = int(letter_w * scale_canvas_h)
scale_canvas_w = wsize / letter_w
else:
scale_canvas_h = target_h_letter / letter_h
wsize = int(letter_w * scale_canvas_h)
scale_canvas_w = wsize / letter_w
for num, p in enumerate(shapes):
p.points[:, 0] = p.points[:, 0] * scale_canvas_w
p.points[:, 1] = p.points[:, 1] * scale_canvas_h + target_h_letter
w_min = min([torch.min(p.points[:, 0]) for p in shapes])
w_max = max([torch.max(p.points[:, 0]) for p in shapes])
h_min = min([torch.min(p.points[:, 1]) for p in shapes])
h_max = max([torch.max(p.points[:, 1]) for p in shapes])
for num, p in enumerate(shapes):
p.points[:, 0] = p.points[:, 0] + (target_canvas_width / 2) - int(w_min + (w_max - w_min) / 2)
p.points[:, 1] = p.points[:, 1] + (target_canvas_height / 2) - int(h_min + (h_max - h_min) / 2)
output_path = f"{svg_path[:-4]}_scaled.svg"
print("output_path: ", output_path)
self.save_svg(output_path, target_canvas_width, target_canvas_height, shapes, shape_groups)
def combine_word(self, word, letter, font, results_dir):
word_svg_scaled = results_dir / f"{font}_{word}_scaled.svg"
canvas_width_word, canvas_height_word, shapes_word, shape_groups_word = pydiffvg.svg_to_scene(word_svg_scaled)
letter_ids = []
for l in letter:
letter_ids += self.get_letter_ids(l, word, shape_groups_word)
w_min, w_max = min([torch.min(shapes_word[ids].points[:, 0]) for ids in letter_ids]), max(
[torch.max(shapes_word[ids].points[:, 0]) for ids in letter_ids])
h_min, h_max = min([torch.min(shapes_word[ids].points[:, 1]) for ids in letter_ids]), max(
[torch.max(shapes_word[ids].points[:, 1]) for ids in letter_ids])
c_w = (-w_min + w_max) / 2
c_h = (-h_min + h_max) / 2
svg_result = results_dir / "final_letter.svg"
canvas_width, canvas_height, shapes, shape_groups = pydiffvg.svg_to_scene(svg_result)
out_w_min, out_w_max = min([torch.min(p.points[:, 0]) for p in shapes]), max(
[torch.max(p.points[:, 0]) for p in shapes])
out_h_min, out_h_max = min([torch.min(p.points[:, 1]) for p in shapes]), max(
[torch.max(p.points[:, 1]) for p in shapes])
out_c_w = (-out_w_min + out_w_max) / 2
out_c_h = (-out_h_min + out_h_max) / 2
scale_canvas_w = (w_max - w_min) / (out_w_max - out_w_min)
scale_canvas_h = (h_max - h_min) / (out_h_max - out_h_min)
if scale_canvas_h > scale_canvas_w:
wsize = int((out_w_max - out_w_min) * scale_canvas_h)
scale_canvas_w = wsize / (out_w_max - out_w_min)
shift_w = -out_c_w * scale_canvas_w + c_w
else:
hsize = int((out_h_max - out_h_min) * scale_canvas_w)
scale_canvas_h = hsize / (out_h_max - out_h_min)
shift_h = -out_c_h * scale_canvas_h + c_h
for num, p in enumerate(shapes):
p.points[:, 0] = p.points[:, 0] * scale_canvas_w
p.points[:, 1] = p.points[:, 1] * scale_canvas_h
if scale_canvas_h > scale_canvas_w:
p.points[:, 0] = p.points[:, 0] - out_w_min * scale_canvas_w + w_min + shift_w
p.points[:, 1] = p.points[:, 1] - out_h_min * scale_canvas_h + h_min
else:
p.points[:, 0] = p.points[:, 0] - out_w_min * scale_canvas_w + w_min
p.points[:, 1] = p.points[:, 1] - out_h_min * scale_canvas_h + h_min + shift_h
for j, s in enumerate(letter_ids):
shapes_word[s] = shapes[j]
word_letter_result = results_dir / f"{font}_{word}_{letter}.svg"
self.save_svg(word_letter_result, canvas_width, canvas_height, shapes_word, shape_groups_word)
render = pydiffvg.RenderFunction.apply
scene_args = pydiffvg.RenderFunction.serialize_scene(canvas_width,
canvas_height,
shapes_word,
shape_groups_word)
img = render(canvas_width, canvas_height, 2, 2, 0, None, *scene_args)
img = img[:, :, 3:4] * img[:, :, :3] + \
torch.ones(img.shape[0], img.shape[1], 3, device=self.device) * (1 - img[:, :, 3:4])
img = img[:, :, :3]
word_letter_result = results_dir / f"{font}_{word}_{letter}.png"
self.save_image(img, word_letter_result)
def get_letter_ids(self, letter, word, shape_groups):
for group, l in zip(shape_groups, word):
if l == letter:
return group.shape_ids
def pretty_save_svg(self, filename, width=None, height=None, shapes=None, shape_groups=None):
width = self.canvas_width if width is None else width
height = self.canvas_height if height is None else height
shapes = self.shapes if shapes is None else shapes
shape_groups = self.shape_groups if shape_groups is None else shape_groups
self.save_svg(filename, width, height, shapes, shape_groups, use_gamma=False, background=None)
class PainterOptimizer:
def __init__(self, renderer: Painter, num_iter: int, lr_cfg: omegaconf.DictConfig, optim_color: bool = False):
self.renderer = renderer
self.num_iter = num_iter
self.lr_cfg = lr_cfg
self.optim_color = optim_color
self.point_optimizer = None
self.color_optimizer = None
self.scheduler = None
def init_optimizers(self):
# optimizer
point_vars = self.renderer.get_point_parameters()
self.point_optimizer = torch.optim.Adam(point_vars, lr=self.lr_cfg.point, betas=(0.9, 0.9), eps=1e-6)
if self.optim_color:
color_vars = self.renderer.get_color_parameters()
self.color_optimizer = torch.optim.Adam(color_vars, lr=self.lr_cfg.color, betas=(0.9, 0.9), eps=1e-6)
# lr schedule
lr_lambda_fn = lambda step: learning_rate_decay(
step,
self.lr_cfg.lr_init,
self.lr_cfg.lr_final,
self.num_iter,
self.lr_cfg.lr_delay_steps,
self.lr_cfg.lr_delay_mult
) / self.lr_cfg.lr_init
self.scheduler = LambdaLR(self.point_optimizer, lr_lambda=lr_lambda_fn, last_epoch=-1)
def update_lr(self):
self.scheduler.step()
def zero_grad_(self):
self.point_optimizer.zero_grad()
if self.optim_color:
self.color_optimizer.zero_grad()
def step_(self):
self.point_optimizer.step()
if self.optim_color:
self.color_optimizer.step()
def get_lr(self):
return self.point_optimizer.param_groups[0]['lr']
def learning_rate_decay(step,
lr_init,
lr_final,
max_steps,
lr_delay_steps=0,
lr_delay_mult=1):
"""
Continuous learning rate decay function.
The returned rate is lr_init when step=0 and lr_final when step=max_steps, and
is log-linearly interpolated elsewhere (equivalent to exponential decay).
If lr_delay_steps>0 then the learning rate will be scaled by some smooth
function of lr_delay_mult, such that the initial learning rate is
lr_init*lr_delay_mult at the beginning of optimization but will be eased back
to the normal learning rate when steps>lr_delay_steps.
pytorch adaptation of https://github.com/google/mipnerf
Args:
step: int, the current optimization step.
lr_init: float, the initial learning rate.
lr_final: float, the final learning rate.
max_steps: int, the number of steps during optimization.
lr_delay_steps: int, the number of steps to delay the full learning rate.
lr_delay_mult: float, the multiplier on the rate when delaying it.
Returns:
lr: the learning for current step 'step'.
"""
if lr_delay_steps > 0:
# A kind of reverse cosine decay.
delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin(
0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1))
else:
delay_rate = 1.
t = np.clip(step / max_steps, 0, 1)
log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
return delay_rate * log_lerp
|