File size: 16,918 Bytes
966ae59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# -*- coding: utf-8 -*-
# Copyright (c) XiMing Xing. All rights reserved.
# Author: XiMing Xing
# Description:
import pathlib
from PIL import Image
from typing import AnyStr

import numpy as np
from tqdm.auto import tqdm
import torch
from torch.optim.lr_scheduler import LambdaLR
import torchvision
from torchvision import transforms

from pytorch_svgrender.libs.engine import ModelState
from pytorch_svgrender.libs.solver.optim import get_optimizer
from pytorch_svgrender.painter.svgdreamer import Painter, PainterOptimizer
from pytorch_svgrender.painter.svgdreamer.painter_params import CosineWithWarmupLRLambda
from pytorch_svgrender.painter.live import xing_loss_fn
from pytorch_svgrender.painter.svgdreamer import VectorizedParticleSDSPipeline
from pytorch_svgrender.plt import plot_img
from pytorch_svgrender.utils.color_attrs import init_tensor_with_color
from pytorch_svgrender.token2attn.ptp_utils import view_images
from pytorch_svgrender.diffusers_warp import model2res

import ImageReward as RM


class SVGDreamerPipeline(ModelState):

    def __init__(self, args):
        assert args.x.style in ["iconography", "pixelart", "low-poly", "painting", "sketch", "ink"]
        assert args.x.guidance.n_particle >= args.x.guidance.vsd_n_particle
        assert args.x.guidance.n_particle >= args.x.guidance.phi_n_particle
        assert args.x.guidance.n_phi_sample >= 1

        logdir_ = f"sd{args.seed}" \
                  f"-{'vpsd' if args.x.skip_sive else 'sive'}" \
                  f"-{args.x.model_id}" \
                  f"-{args.x.style}" \
                  f"-P{args.x.num_paths}" \
                  f"{'-RePath' if args.x.path_reinit.use else ''}"
        super().__init__(args, log_path_suffix=logdir_)

        # create log dir
        self.png_logs_dir = self.result_path / "png_logs"
        self.svg_logs_dir = self.result_path / "svg_logs"
        self.ft_png_logs_dir = self.result_path / "ft_png_logs"
        self.ft_svg_logs_dir = self.result_path / "ft_svg_logs"
        self.sd_sample_dir = self.result_path / 'sd_samples'
        self.reinit_dir = self.result_path / "reinit_logs"
        self.init_stage_two_dir = self.result_path / "stage_two_init_logs"
        self.phi_samples_dir = self.result_path / "phi_sampling_logs"

        if self.accelerator.is_main_process:
            self.png_logs_dir.mkdir(parents=True, exist_ok=True)
            self.svg_logs_dir.mkdir(parents=True, exist_ok=True)
            self.ft_png_logs_dir.mkdir(parents=True, exist_ok=True)
            self.ft_svg_logs_dir.mkdir(parents=True, exist_ok=True)
            self.sd_sample_dir.mkdir(parents=True, exist_ok=True)
            self.reinit_dir.mkdir(parents=True, exist_ok=True)
            self.init_stage_two_dir.mkdir(parents=True, exist_ok=True)
            self.phi_samples_dir.mkdir(parents=True, exist_ok=True)

        self.select_fpth = self.result_path / 'select_sample.png'

        # make video log
        self.make_video = self.args.mv
        if self.make_video:
            self.frame_idx = 0
            self.frame_log_dir = self.result_path / "frame_logs"
            self.frame_log_dir.mkdir(parents=True, exist_ok=True)

        self.g_device = torch.Generator(device=self.device).manual_seed(args.seed)

        self.pipeline = VectorizedParticleSDSPipeline(args, args.diffuser, self.x_cfg.guidance, self.device)

        # load reward model
        self.reward_model = None
        if self.x_cfg.guidance.phi_ReFL:
            self.reward_model = RM.load("ImageReward-v1.0", device=self.device, download_root=self.x_cfg.reward_path)

        self.style = self.x_cfg.style
        if self.style == "pixelart":
            self.x_cfg.lr_stage_one.lr_schedule = False
            self.x_cfg.lr_stage_two.lr_schedule = False

    def target_file_preprocess(self, tar_path: AnyStr):
        process_comp = transforms.Compose([
            transforms.Resize(size=(self.x_cfg.image_size, self.x_cfg.image_size)),
            transforms.ToTensor(),
            transforms.Lambda(lambda t: t.unsqueeze(0)),
        ])

        tar_pil = Image.open(tar_path).convert("RGB")  # open file
        target_img = process_comp(tar_pil)  # preprocess
        target_img = target_img.to(self.device)
        return target_img

    def SIVE_stage(self, text_prompt: str):
        # TODO: SIVE implementation
        pass

    def painterly_rendering(self, text_prompt: str, target_file: AnyStr = None):
        # log prompts
        self.print(f"prompt: {text_prompt}")
        self.print(f"neg_prompt: {self.args.neg_prompt}\n")

        # for convenience
        im_size = self.x_cfg.image_size
        guidance_cfg = self.x_cfg.guidance
        n_particle = self.x_cfg.guidance.n_particle
        total_step = self.x_cfg.guidance.num_iter
        path_reinit = self.x_cfg.path_reinit

        init_from_target = True if (target_file and pathlib.Path(target_file).exists()) else False
        # switch mode
        if self.x_cfg.skip_sive and not init_from_target:
            # mode 1: optimization with VPSD from scratch
            # randomly init
            self.print("optimization with VPSD from scratch...")
            if self.x_cfg.color_init == 'rand':
                target_img = torch.randn(1, 3, im_size, im_size)
                self.print("color: randomly init")
            else:
                target_img = init_tensor_with_color(self.x_cfg.color_init, 1, im_size, im_size)
                self.print(f"color: {self.x_cfg.color_init}")

            # log init target_img
            plot_img(target_img, self.result_path, fname='init_target_img')
            final_svg_path = None
        elif init_from_target:
            # mode 2: load the SVG file and finetune it
            self.print(f"load svg from {target_file} ...")
            self.print(f"SVG fine-tuning via VPSD...")
            final_svg_path = target_file
            if self.x_cfg.color_init == 'target_randn':
                # special order: init newly paths color use random color
                target_img = torch.randn(1, 3, im_size, im_size)
                self.print("color: randomly init")
            else:
                # load the SVG and init newly paths color use target_img
                # note: the target will be converted to png via pydiffvg when load_renderer called
                target_img = None
        else:
            # mode 3: text-to-img-to-svg (two stage)
            target_img, final_svg_path = self.SIVE_stage(text_prompt)
            self.x_cfg.path_svg = final_svg_path
            self.print("\n SVG fine-tuning via VPSD...")
            plot_img(target_img, self.result_path, fname='init_target_img')

        # create svg renderer
        renderers = [self.load_renderer(final_svg_path) for _ in range(n_particle)]

        # randomly initialize the particles
        if self.x_cfg.skip_sive or init_from_target:
            if target_img is None:
                target_img = self.target_file_preprocess(self.result_path / 'target_img.png')
            for render in renderers:
                render.component_wise_path_init(gt=target_img, pred=None, init_type='random')

        # log init images
        for i, r in enumerate(renderers):
            init_imgs = r.init_image(stage=0, num_paths=self.x_cfg.num_paths)
            plot_img(init_imgs, self.init_stage_two_dir, fname=f"init_img_stage_two_{i}")

        # init renderer optimizer
        optimizers = []
        for renderer in renderers:
            optim_ = PainterOptimizer(renderer,
                                      self.style,
                                      guidance_cfg.num_iter,
                                      self.x_cfg.lr_stage_two,
                                      self.x_cfg.trainable_bg)
            optim_.init_optimizers()
            optimizers.append(optim_)

        # init phi_model optimizer
        phi_optimizer = get_optimizer('adamW',
                                      self.pipeline.phi_params,
                                      guidance_cfg.phi_lr,
                                      guidance_cfg.phi_optim)
        # init phi_model lr scheduler
        phi_scheduler = None
        schedule_cfg = guidance_cfg.phi_schedule
        if schedule_cfg.use:
            phi_lr_lambda = CosineWithWarmupLRLambda(num_steps=schedule_cfg.total_step,
                                                     warmup_steps=schedule_cfg.warmup_steps,
                                                     warmup_start_lr=schedule_cfg.warmup_start_lr,
                                                     warmup_end_lr=schedule_cfg.warmup_end_lr,
                                                     cosine_end_lr=schedule_cfg.cosine_end_lr)
            phi_scheduler = LambdaLR(phi_optimizer, lr_lambda=phi_lr_lambda, last_epoch=-1)

        self.print(f"-> Painter point Params: {len(renderers[0].get_point_parameters())}")
        self.print(f"-> Painter color Params: {len(renderers[0].get_color_parameters())}")
        self.print(f"-> Painter width Params: {len(renderers[0].get_width_parameters())}")

        L_reward = torch.tensor(0.)

        self.step = 0  # reset global step
        self.print(f"\ntotal VPSD optimization steps: {total_step}")
        with tqdm(initial=self.step, total=total_step, disable=not self.accelerator.is_main_process) as pbar:
            while self.step < total_step:
                # set particles
                particles = [renderer.get_image() for renderer in renderers]
                raster_imgs = torch.cat(particles, dim=0)

                if self.make_video and (self.step % self.args.framefreq == 0 or self.step == total_step - 1):
                    plot_img(raster_imgs, self.frame_log_dir, fname=f"iter{self.frame_idx}")
                    self.frame_idx += 1

                L_guide, grad, latents, t_step = self.pipeline.variational_score_distillation(
                    raster_imgs,
                    self.step,
                    prompt=[text_prompt],
                    negative_prompt=self.args.neg_prompt,
                    grad_scale=guidance_cfg.grad_scale,
                    enhance_particle=guidance_cfg.particle_aug,
                    im_size=model2res(self.x_cfg.model_id)
                )

                # Xing Loss for Self-Interaction Problem
                L_add = torch.tensor(0.)
                if self.style == "iconography" or self.x_cfg.xing_loss.use:
                    for r in renderers:
                        L_add += xing_loss_fn(r.get_point_parameters()) * self.x_cfg.xing_loss.weight

                loss = L_guide + L_add

                # optimization
                for opt_ in optimizers:
                    opt_.zero_grad_()
                loss.backward()
                for opt_ in optimizers:
                    opt_.step_()

                # phi_model optimization
                for _ in range(guidance_cfg.phi_update_step):
                    L_lora = self.pipeline.train_phi_model(latents, guidance_cfg.phi_t, as_latent=True)

                    phi_optimizer.zero_grad()
                    L_lora.backward()
                    phi_optimizer.step()

                # reward learning
                if guidance_cfg.phi_ReFL and self.step % guidance_cfg.phi_sample_step == 0:
                    with torch.no_grad():
                        phi_outputs = []
                        phi_sample_paths = []
                        for idx in range(guidance_cfg.n_phi_sample):
                            phi_output = self.pipeline.sample(text_prompt,
                                                              num_inference_steps=guidance_cfg.phi_infer_step,
                                                              generator=self.g_device)
                            sample_path = (self.phi_samples_dir / f'iter{idx}.png').as_posix()
                            phi_output.images[0].save(sample_path)
                            phi_sample_paths.append(sample_path)

                            phi_output_np = np.array(phi_output.images[0])
                            phi_outputs.append(phi_output_np)
                        # save all samples
                        view_images(phi_outputs, save_image=True,
                                    num_rows=max(len(phi_outputs) // 6, 1),
                                    fp=self.phi_samples_dir / f'samples_iter{self.step}.png')

                    ranking, rewards = self.reward_model.inference_rank(text_prompt, phi_sample_paths)
                    self.print(f"ranking: {ranking}, reward score: {rewards}")

                    for k in range(guidance_cfg.n_phi_sample):
                        phi = self.target_file_preprocess(phi_sample_paths[ranking[k] - 1])
                        L_reward = self.pipeline.train_phi_model_refl(phi, weight=rewards[k])

                        phi_optimizer.zero_grad()
                        L_reward.backward()
                        phi_optimizer.step()

                # update the learning rate of the phi_model
                if phi_scheduler is not None:
                    phi_scheduler.step()

                # curve regularization
                for r in renderers:
                    r.clip_curve_shape()

                # re-init paths
                if self.step % path_reinit.freq == 0 and self.step < path_reinit.stop_step and self.step != 0:
                    for i, r in enumerate(renderers):
                        r.reinitialize_paths(path_reinit.use,  # on-off
                                             path_reinit.opacity_threshold,
                                             path_reinit.area_threshold,
                                             fpath=self.reinit_dir / f"reinit-{self.step}_p{i}.svg")

                # update lr
                if self.x_cfg.lr_stage_two.lr_schedule:
                    for opt_ in optimizers:
                        opt_.update_lr()

                # log pretrained model lr
                lr_str = ""
                for k, lr in optimizers[0].get_lr().items():
                    lr_str += f"{k}_lr: {lr:.4f}, "
                # log phi model lr
                cur_phi_lr = phi_optimizer.param_groups[0]['lr']
                lr_str += f"phi_lr: {cur_phi_lr:.3e}, "

                pbar.set_description(
                    lr_str +
                    f"t: {t_step.item():.2f}, "
                    f"L_total: {loss.item():.4f}, "
                    f"L_add: {L_add.item():.4e}, "
                    f"L_lora: {L_lora.item():.4f}, "
                    f"L_reward: {L_reward.item():.4f}, "
                    f"vpsd: {grad.item():.4e}"
                )

                if self.step % self.args.save_step == 0 and self.accelerator.is_main_process:
                    # save png
                    torchvision.utils.save_image(raster_imgs,
                                                 fp=self.ft_png_logs_dir / f'iter{self.step}.png')

                    # save svg
                    for i, r in enumerate(renderers):
                        r.pretty_save_svg(self.ft_svg_logs_dir / f"svg_iter{self.step}_p{i}.svg")

                self.step += 1
                pbar.update(1)

        # save final
        for i, r in enumerate(renderers):
            final_svg_path = self.result_path / f"finetune_final_p_{i}.svg"
            r.pretty_save_svg(final_svg_path)
        # save SVGs
        torchvision.utils.save_image(raster_imgs, fp=self.result_path / f'all_particles.png')

        if self.make_video:
            from subprocess import call
            call([
                "ffmpeg",
                "-framerate", f"{self.args.framerate}",
                "-i", (self.frame_log_dir / "iter%d.png").as_posix(),
                "-vb", "20M",
                (self.result_path / "svgdreamer_rendering.mp4").as_posix()
            ])

        self.close(msg="painterly rendering complete.")

    def load_renderer(self, path_svg=None):
        renderer = Painter(self.args.diffvg,
                           self.style,
                           self.x_cfg.num_segments,
                           self.x_cfg.segment_init,
                           self.x_cfg.radius,
                           self.x_cfg.image_size,
                           self.x_cfg.grid,
                           self.x_cfg.trainable_bg,
                           self.x_cfg.width,
                           path_svg=path_svg,
                           device=self.device)

        # if load a svg file, then rasterize it
        save_path = self.result_path / 'target_img.png'
        if path_svg is not None and (not save_path.exists()):
            canvas_width, canvas_height, shapes, shape_groups = renderer.load_svg(path_svg)
            render_img = renderer.render_image(canvas_width, canvas_height, shapes, shape_groups)
            torchvision.utils.save_image(render_img, fp=save_path)
        return renderer