Spaces:
Running
Running
File size: 7,675 Bytes
966ae59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# -*- coding: utf-8 -*-
# Copyright (c) XiMing Xing. All rights reserved.
# Author: XiMing Xing
# Description:
import shutil
from PIL import Image
from pathlib import Path
import torch
from torchvision import transforms
import clip
from tqdm.auto import tqdm
import numpy as np
from pytorch_svgrender.libs.engine import ModelState
from pytorch_svgrender.painter.style_clipdraw import (
Painter, PainterOptimizer, VGG16Extractor, StyleLoss, sample_indices
)
from pytorch_svgrender.plt import plot_img, plot_couple
class StyleCLIPDrawPipeline(ModelState):
def __init__(self, args):
logdir_ = f"sd{args.seed}" \
f"-P{args.x.num_paths}" \
f"-style{args.x.style_strength}" \
f"-n{args.x.num_aug}"
super().__init__(args, log_path_suffix=logdir_)
# create log dir
self.png_logs_dir = self.result_path / "png_logs"
self.svg_logs_dir = self.result_path / "svg_logs"
if self.accelerator.is_main_process:
self.png_logs_dir.mkdir(parents=True, exist_ok=True)
self.svg_logs_dir.mkdir(parents=True, exist_ok=True)
# make video log
self.make_video = self.args.mv
if self.make_video:
self.frame_idx = 0
self.frame_log_dir = self.result_path / "frame_logs"
self.frame_log_dir.mkdir(parents=True, exist_ok=True)
self.clip, self.tokenize_fn = self.init_clip()
self.style_extractor = VGG16Extractor(space="normal").to(self.device)
self.style_loss = StyleLoss()
def init_clip(self):
model, _ = clip.load('ViT-B/32', self.device, jit=False)
return model, clip.tokenize
def drawing_augment(self, image):
augment_trans = transforms.Compose([
transforms.RandomPerspective(fill=1, p=1, distortion_scale=0.5),
transforms.RandomResizedCrop(224, scale=(0.7, 0.9)),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
# image augmentation transformation
img_augs = []
for n in range(self.x_cfg.num_aug):
img_augs.append(augment_trans(image))
im_batch = torch.cat(img_augs)
# clip visual encoding
image_features = self.clip.encode_image(im_batch)
return image_features
def style_file_preprocess(self, style_file):
process_comp = transforms.Compose([
transforms.Resize(size=(224, 224)),
transforms.ToTensor(),
transforms.Lambda(lambda t: t.unsqueeze(0)),
transforms.Lambda(lambda t: (t + 1) / 2),
])
style_file = process_comp(style_file)
style_file = style_file.to(self.device)
return style_file
def painterly_rendering(self, prompt, style_fpath):
# load style file
style_path = Path(style_fpath)
assert style_path.exists(), f"{style_fpath} is not exist!"
self.print(f"load style file from: {style_path.as_posix()}")
style_pil = Image.open(style_path.as_posix()).convert("RGB")
style_img = self.style_file_preprocess(style_pil)
shutil.copy(style_fpath, self.result_path) # copy style file
# extract style features from style image
feat_style = None
for i in range(5):
with torch.no_grad():
# r is region of interest (mask)
feat_e = self.style_extractor.forward_samples_hypercolumn(style_img, samps=1000)
feat_style = feat_e if feat_style is None else torch.cat((feat_style, feat_e), dim=2)
# text prompt encoding
self.print(f"prompt: {prompt}")
text_tokenize = self.tokenize_fn(prompt).to(self.device)
with torch.no_grad():
text_features = self.clip.encode_text(text_tokenize)
renderer = Painter(self.x_cfg,
self.args.diffvg,
num_strokes=self.x_cfg.num_paths,
canvas_size=self.x_cfg.image_size,
device=self.device)
img = renderer.init_image(stage=0)
self.print("init_image shape: ", img.shape)
plot_img(img, self.result_path, fname="init_img")
optimizer = PainterOptimizer(renderer, self.x_cfg.lr, self.x_cfg.width_lr, self.x_cfg.color_lr)
optimizer.init_optimizers()
style_weight = 4 * (self.x_cfg.style_strength / 100)
self.print(f'style_weight: {style_weight}')
total_step = self.x_cfg.num_iter
with tqdm(initial=self.step, total=total_step, disable=not self.accelerator.is_main_process) as pbar:
while self.step < total_step:
rendering = renderer.get_image(self.step).to(self.device)
if self.make_video and (self.step % self.args.framefreq == 0 or self.step == total_step - 1):
plot_img(rendering, self.frame_log_dir, fname=f"iter{self.frame_idx}")
self.frame_idx += 1
rendering_aug = self.drawing_augment(rendering)
loss = torch.tensor(0., device=self.device)
# do clip optimization
if self.step < 0.9 * total_step:
for n in range(self.x_cfg.num_aug):
loss -= torch.cosine_similarity(text_features, rendering_aug[n:n + 1], dim=1).mean()
# do style optimization
# extract style features based on the approach from STROTSS [Kolkin et al., 2019].
feat_content = self.style_extractor(rendering)
xx, xy = sample_indices(feat_content[0], feat_style)
np.random.shuffle(xx)
np.random.shuffle(xy)
L_style = self.style_loss.forward(feat_content, feat_content, feat_style, [xx, xy], 0)
loss += L_style * style_weight
pbar.set_description(
f"lr: {optimizer.get_lr():.3f}, "
f"L_train: {loss.item():.4f}, "
f"L_style: {L_style.item():.4f}"
)
# optimization
optimizer.zero_grad_()
loss.backward()
optimizer.step_()
renderer.clip_curve_shape()
if self.x_cfg.lr_schedule:
optimizer.update_lr(self.step)
if self.step % self.args.save_step == 0 and self.accelerator.is_main_process:
plot_couple(style_img,
rendering,
self.step,
prompt=prompt,
output_dir=self.png_logs_dir.as_posix(),
fname=f"iter{self.step}")
renderer.save_svg(self.svg_logs_dir.as_posix(), f"svg_iter{self.step}")
self.step += 1
pbar.update(1)
plot_couple(style_img,
rendering,
self.step,
prompt=prompt,
output_dir=self.result_path.as_posix(),
fname=f"final_iter")
renderer.save_svg(self.result_path.as_posix(), "final_svg")
if self.make_video:
from subprocess import call
call([
"ffmpeg",
"-framerate", f"{self.args.framerate}",
"-i", (self.frame_log_dir / "iter%d.png").as_posix(),
"-vb", "20M",
(self.result_path / "styleclipdraw_rendering.mp4").as_posix()
])
self.close(msg="painterly rendering complete.")
|