Spaces:
Running
Running
File size: 10,168 Bytes
966ae59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
# -*- coding: utf-8 -*-
# Copyright (c) XiMing Xing. All rights reserved.
# Author: XiMing Xing
# Description:
from abc import ABC, abstractmethod
from typing import Optional, Union, Tuple, List, Dict
import torch
import torch.nn.functional as F
from .ptp_utils import (get_word_inds, get_time_words_attention_alpha)
from .seq_aligner import (get_replacement_mapper, get_refinement_mapper)
class AttentionControl(ABC):
def __init__(self):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
@property
def num_uncond_att_layers(self):
return 0
@abstractmethod
def forward(self, attn, is_cross: bool, place_in_unet: str):
raise NotImplementedError
def __call__(self, attn, is_cross: bool, place_in_unet: str):
if self.cur_att_layer >= self.num_uncond_att_layers:
h = attn.shape[0]
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
self.cur_att_layer += 1
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
self.cur_att_layer = 0
self.cur_step += 1
self.between_steps()
return attn
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
class EmptyControl(AttentionControl):
def forward(self, attn, is_cross: bool, place_in_unet: str):
return attn
class AttentionStore(AttentionControl):
def __init__(self):
super(AttentionStore, self).__init__()
self.step_store = self.get_empty_store()
self.attention_store = {}
@staticmethod
def get_empty_store():
return {"down_cross": [], "mid_cross": [], "up_cross": [],
"down_self": [], "mid_self": [], "up_self": []}
def forward(self, attn, is_cross: bool, place_in_unet: str):
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
if attn.shape[1] <= 32 ** 2: # avoid memory overhead
self.step_store[key].append(attn)
return attn
def between_steps(self):
if len(self.attention_store) == 0:
self.attention_store = self.step_store
else:
for key in self.attention_store:
for i in range(len(self.attention_store[key])):
self.attention_store[key][i] += self.step_store[key][i]
self.step_store = self.get_empty_store()
def get_average_attention(self):
average_attention = {
key: [item / self.cur_step for item in self.attention_store[key]]
for key in self.attention_store
}
return average_attention
def reset(self):
super(AttentionStore, self).reset()
self.step_store = self.get_empty_store()
self.attention_store = {}
class LocalBlend:
def __init__(self,
prompts: List[str],
words: [List[List[str]]],
tokenizer,
device,
threshold=.3,
max_num_words=77):
self.max_num_words = max_num_words
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, self.max_num_words)
for i, (prompt, words_) in enumerate(zip(prompts, words)):
if type(words_) is str:
words_ = [words_]
for word in words_:
ind = get_word_inds(prompt, word, tokenizer)
alpha_layers[i, :, :, :, :, ind] = 1
self.alpha_layers = alpha_layers.to(device)
self.threshold = threshold
def __call__(self, x_t, attention_store):
k = 1
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, self.max_num_words) for item in maps]
maps = torch.cat(maps, dim=1)
maps = (maps * self.alpha_layers).sum(-1).mean(1)
mask = F.max_pool2d(maps, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k))
mask = F.interpolate(mask, size=(x_t.shape[2:]))
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
mask = mask.gt(self.threshold)
mask = (mask[:1] + mask[1:]).float()
x_t = x_t[:1] + mask * (x_t - x_t[:1])
return x_t
class AttentionControlEdit(AttentionStore, ABC):
def __init__(self,
prompts,
num_steps: int,
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
self_replace_steps: Union[float, Tuple[float, float]],
local_blend: Optional[LocalBlend],
tokenizer,
device):
super(AttentionControlEdit, self).__init__()
self.tokenizer = tokenizer
self.device = device
self.batch_size = len(prompts)
self.cross_replace_alpha = get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps,
self.tokenizer).to(self.device)
if type(self_replace_steps) is float:
self_replace_steps = 0, self_replace_steps
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
self.local_blend = local_blend # define outside
def step_callback(self, x_t):
if self.local_blend is not None:
x_t = self.local_blend(x_t, self.attention_store)
return x_t
def replace_self_attention(self, attn_base, att_replace):
if att_replace.shape[2] <= 16 ** 2:
return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
else:
return att_replace
@abstractmethod
def replace_cross_attention(self, attn_base, att_replace):
raise NotImplementedError
def forward(self, attn, is_cross: bool, place_in_unet: str):
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
# FIXME not replace correctly
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
h = attn.shape[0] // (self.batch_size)
attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
attn_base, attn_repalce = attn[0], attn[1:]
if is_cross:
alpha_words = self.cross_replace_alpha[self.cur_step]
attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (
1 - alpha_words) * attn_repalce
attn[1:] = attn_repalce_new
else:
attn[1:] = self.replace_self_attention(attn_base, attn_repalce)
attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
return attn
class AttentionReplace(AttentionControlEdit):
def __init__(self,
prompts,
num_steps: int,
cross_replace_steps: float,
self_replace_steps: float,
local_blend: Optional[LocalBlend] = None,
tokenizer=None,
device=None):
super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps,
local_blend, tokenizer, device)
self.mapper = get_replacement_mapper(prompts, self.tokenizer).to(self.device)
def replace_cross_attention(self, attn_base, att_replace):
return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper)
class AttentionRefine(AttentionControlEdit):
def __init__(self,
prompts,
num_steps: int,
cross_replace_steps: float,
self_replace_steps: float,
local_blend: Optional[LocalBlend] = None,
tokenizer=None,
device=None):
super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps,
local_blend, tokenizer, device)
self.mapper, alphas = get_refinement_mapper(prompts, self.tokenizer)
self.mapper, alphas = self.mapper.to(self.device), alphas.to(self.device)
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])
def replace_cross_attention(self, attn_base, att_replace):
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
return attn_replace
class AttentionReweight(AttentionControlEdit):
def __init__(self,
prompts,
num_steps: int,
cross_replace_steps: float,
self_replace_steps: float,
equalizer,
local_blend: Optional[LocalBlend] = None,
controller: Optional[AttentionControlEdit] = None,
tokenizer=None,
device=None):
super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps,
local_blend, tokenizer, device)
self.equalizer = equalizer.to(self.device)
self.prev_controller = controller
def replace_cross_attention(self, attn_base, att_replace):
if self.prev_controller is not None:
attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace)
attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :]
return attn_replace
def get_equalizer(tokenizer, text: str,
word_select: Union[int, Tuple[int, ...]],
values: Union[List[float], Tuple[float, ...]]):
if type(word_select) is int or type(word_select) is str:
word_select = (word_select,)
equalizer = torch.ones(len(values), 77)
values = torch.tensor(values, dtype=torch.float32)
for word in word_select:
inds = get_word_inds(text, word, tokenizer)
equalizer[:, inds] = values
return equalizer
|