Spaces:
Running
Running
''' | |
@File : AestheticScore.py | |
@Time : 2023/02/12 14:54:00 | |
@Auther : Jiazheng Xu | |
@Contact : [email protected] | |
@Description: AestheticScore. | |
* Based on improved-aesthetic-predictor code base | |
* https://github.com/christophschuhmann/improved-aesthetic-predictor | |
''' | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from PIL import Image | |
import clip | |
# if you changed the MLP architecture during training, change it also here: | |
class MLP(nn.Module): | |
def __init__(self, input_size): | |
super().__init__() | |
self.input_size = input_size | |
self.layers = nn.Sequential( | |
nn.Linear(self.input_size, 1024), | |
# nn.ReLU(), | |
nn.Dropout(0.2), | |
nn.Linear(1024, 128), | |
# nn.ReLU(), | |
nn.Dropout(0.2), | |
nn.Linear(128, 64), | |
# nn.ReLU(), | |
nn.Dropout(0.1), | |
nn.Linear(64, 16), | |
# nn.ReLU(), | |
nn.Linear(16, 1) | |
) | |
def forward(self, x): | |
return self.layers(x) | |
class AestheticScore(nn.Module): | |
def __init__(self, download_root, device='cpu'): | |
super().__init__() | |
self.device = device | |
self.clip_model, self.preprocess = clip.load("ViT-L/14", device=self.device, jit=False, | |
download_root=download_root) | |
self.mlp = MLP(768) | |
if device == "cpu": | |
self.clip_model.float() | |
else: | |
clip.model.convert_weights( | |
self.clip_model) # Actually this line is unnecessary since clip by default already on float16 | |
# have clip.logit_scale require no grad. | |
self.clip_model.logit_scale.requires_grad_(False) | |
def score(self, prompt, image_path): | |
if (type(image_path).__name__ == 'list'): | |
_, rewards = self.inference_rank(prompt, image_path) | |
return rewards | |
# image encode | |
pil_image = Image.open(image_path) | |
image = self.preprocess(pil_image).unsqueeze(0).to(self.device) | |
image_features = F.normalize(self.clip_model.encode_image(image)).float() | |
# score | |
rewards = self.mlp(image_features) | |
return rewards.detach().cpu().numpy().item() | |
def inference_rank(self, prompt, generations_list): | |
img_set = [] | |
for generations in generations_list: | |
# image encode | |
img_path = generations | |
pil_image = Image.open(img_path) | |
image = self.preprocess(pil_image).unsqueeze(0).to(self.device) | |
image_features = F.normalize(self.clip_model.encode_image(image)) | |
img_set.append(image_features) | |
img_features = torch.cat(img_set, 0).float() # [image_num, feature_dim] | |
rewards = self.mlp(img_features) | |
rewards = torch.squeeze(rewards) | |
_, rank = torch.sort(rewards, dim=0, descending=True) | |
_, indices = torch.sort(rank, dim=0) | |
indices = indices + 1 | |
return indices.detach().cpu().numpy().tolist(), rewards.detach().cpu().numpy().tolist() | |