Spaces:
Running
Running
''' | |
* Adapted from BLIP (https://github.com/salesforce/BLIP) | |
''' | |
import transformers | |
transformers.logging.set_verbosity_error() | |
from torch import nn | |
import os | |
from .med import BertConfig, BertModel | |
from .blip import create_vit, init_tokenizer | |
class BLIP_Pretrain(nn.Module): | |
def __init__(self, | |
med_config = "med_config.json", | |
image_size = 224, | |
vit = 'base', | |
vit_grad_ckpt = False, | |
vit_ckpt_layer = 0, | |
embed_dim = 256, | |
queue_size = 57600, | |
momentum = 0.995, | |
): | |
""" | |
Args: | |
med_config (str): path for the mixture of encoder-decoder model's configuration file | |
image_size (int): input image size | |
vit (str): model size of vision transformer | |
""" | |
super().__init__() | |
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, 0) | |
self.tokenizer = init_tokenizer() | |
encoder_config = BertConfig.from_json_file(med_config) | |
encoder_config.encoder_width = vision_width | |
self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False) | |
text_width = self.text_encoder.config.hidden_size | |
self.vision_proj = nn.Linear(vision_width, embed_dim) | |
self.text_proj = nn.Linear(text_width, embed_dim) | |