Spaces:
Running
Running
#!/usr/bin/env python3 | |
# Example command: | |
# ./bin/predict.py \ | |
# model.path=<path to checkpoint, prepared by make_checkpoint.py> \ | |
# indir=<path to input data> \ | |
# outdir=<where to store predicts> | |
import logging | |
import os | |
import sys | |
import traceback | |
#import os | |
#import sys | |
import inspect | |
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) | |
parentdir = os.path.dirname(currentdir) | |
sys.path.insert(0, parentdir) | |
# from saicinpainting.evaluation.utils import move_to_device | |
# from saicinpainting.evaluation.refinement import refine_predict | |
os.environ['OMP_NUM_THREADS'] = '1' | |
os.environ['OPENBLAS_NUM_THREADS'] = '1' | |
os.environ['MKL_NUM_THREADS'] = '1' | |
os.environ['VECLIB_MAXIMUM_THREADS'] = '1' | |
os.environ['NUMEXPR_NUM_THREADS'] = '1' | |
import cv2 | |
import hydra | |
import numpy as np | |
import torch | |
import tqdm | |
import yaml | |
from omegaconf import OmegaConf | |
from torch.utils.data._utils.collate import default_collate | |
# from saicinpainting.training.data.datasets import make_default_val_dataset | |
# from saicinpainting.training.trainers import load_checkpoint | |
# from saicinpainting.utils import register_debug_signal_handlers | |
LOGGER = logging.getLogger(__name__) | |
def main(predict_config: OmegaConf): | |
for k in predict_config.keys(): | |
print(k, predict_config[k]) | |
# try: | |
# register_debug_signal_handlers() # kill -10 <pid> will result in traceback dumped into log | |
# device = torch.device(predict_config.device) | |
# train_config_path = os.path.join(predict_config.model.path, 'config.yaml') | |
# with open(train_config_path, 'r') as f: | |
# train_config = OmegaConf.create(yaml.safe_load(f)) | |
# train_config.training_model.predict_only = True | |
# train_config.visualizer.kind = 'noop' | |
# out_ext = predict_config.get('out_ext', '.png') | |
# checkpoint_path = os.path.join(predict_config.model.path, | |
# 'models', | |
# predict_config.model.checkpoint) | |
# model = load_checkpoint(train_config, checkpoint_path, strict=False, map_location='cpu') | |
# model.freeze() | |
# if not predict_config.get('refine', False): | |
# model.to(device) | |
# if not predict_config.indir.endswith('/'): | |
# predict_config.indir += '/' | |
# dataset = make_default_val_dataset(predict_config.indir, **predict_config.dataset) | |
# for img_i in tqdm.trange(len(dataset)): | |
# mask_fname = dataset.mask_filenames[img_i] | |
# cur_out_fname = os.path.join( | |
# predict_config.outdir, | |
# os.path.splitext(mask_fname[len(predict_config.indir):])[0] + out_ext | |
# ) | |
# os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True) | |
# batch = default_collate([dataset[img_i]]) | |
# if predict_config.get('refine', False): | |
# assert 'unpad_to_size' in batch, "Unpadded size is required for the refinement" | |
# # image unpadding is taken care of in the refiner, so that output image | |
# # is same size as the input image | |
# cur_res = refine_predict(batch, model, **predict_config.refiner) | |
# cur_res = cur_res[0].permute(1,2,0).detach().cpu().numpy() | |
# else: | |
# with torch.no_grad(): | |
# batch = move_to_device(batch, device) | |
# batch['mask'] = (batch['mask'] > 0) * 1 | |
# batch = model(batch) | |
# cur_res = batch[predict_config.out_key][0].permute(1, 2, 0).detach().cpu().numpy() | |
# unpad_to_size = batch.get('unpad_to_size', None) | |
# if unpad_to_size is not None: | |
# orig_height, orig_width = unpad_to_size | |
# cur_res = cur_res[:orig_height, :orig_width] | |
# cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8') | |
# cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR) | |
# cv2.imwrite(cur_out_fname, cur_res) | |
# except KeyboardInterrupt: | |
# LOGGER.warning('Interrupted by user') | |
# except Exception as ex: | |
# LOGGER.critical(f'Prediction failed due to {ex}:\n{traceback.format_exc()}') | |
# sys.exit(1) | |
if __name__ == '__main__': | |
main() | |