hjc-owo
init repo
966ae59
import random
import pathlib
import omegaconf
import pydiffvg
import torch
from pytorch_svgrender.diffvg_warp import DiffVGState
class Painter(DiffVGState):
def __init__(
self,
method_cfg: omegaconf.DictConfig,
diffvg_cfg: omegaconf.DictConfig,
num_strokes: int = 4,
canvas_size: int = 224,
device: torch.device = None,
):
super(Painter, self).__init__(device, print_timing=diffvg_cfg.print_timing,
canvas_width=canvas_size, canvas_height=canvas_size)
self.method_cfg = method_cfg
self.num_paths = num_strokes
self.max_width = method_cfg.max_width
self.num_stages = method_cfg.num_stages
self.black_stroke_color = method_cfg.black_stroke_color
self.path_svg = method_cfg.path_svg
self.strokes_per_stage = self.num_paths
self.optimize_flag = []
self.strokes_counter = 0 # counts the number of calls to "get_path"
def init_image(self, stage=0):
if stage > 0:
# Noting: if multi stages training than add new strokes on existing ones
# don't optimize on previous strokes
self.optimize_flag = [False for i in range(len(self.shapes))]
for i in range(self.strokes_per_stage):
stroke_color = torch.tensor([0.0, 0.0, 0.0, 1.0])
path = self.get_path()
self.shapes.append(path)
path_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor([len(self.shapes) - 1]),
fill_color=None,
stroke_color=stroke_color)
self.shape_groups.append(path_group)
self.optimize_flag.append(True)
else:
num_paths_exists = 0
if self.path_svg is not None and pathlib.Path(self.path_svg).exists():
print(f"-> init svg from '{self.path_svg}' ...")
self.canvas_width, self.canvas_height, self.shapes, self.shape_groups = self.load_svg(self.path_svg)
# if you want to add more strokes to existing ones and optimize on all of them
num_paths_exists = len(self.shapes)
for i in range(num_paths_exists, self.num_paths):
if self.black_stroke_color:
stroke_color = torch.tensor([0.0, 0.0, 0.0, 1.0])
else:
stroke_color = torch.tensor([random.random(), random.random(), random.random(), random.random()])
path = self.get_path()
self.shapes.append(path)
path_group = pydiffvg.ShapeGroup(shape_ids=torch.tensor([len(self.shapes) - 1]),
fill_color=None,
stroke_color=stroke_color)
self.shape_groups.append(path_group)
self.optimize_flag = [True for i in range(len(self.shapes))]
img = self.render_warp()
img = img[:, :, 3:4] * img[:, :, :3] + \
torch.ones(img.shape[0], img.shape[1], 3, device=self.device) * (1 - img[:, :, 3:4])
img = img[:, :, :3]
img = img.unsqueeze(0) # convert img from HWC to NCHW
img = img.permute(0, 3, 1, 2).to(self.device) # NHWC -> NCHW
return img
def get_image(self, step=0):
img = self.render_warp(step)
opacity = img[:, :, 3:4]
img = opacity * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device=self.device) * (1 - opacity)
img = img[:, :, :3]
img = img.unsqueeze(0) # convert img from HWC to NCHW
img = img.permute(0, 3, 1, 2).to(self.device) # NHWC -> NCHW
return img
def get_path(self):
num_segments = random.randint(1, 3)
num_control_points = torch.zeros(num_segments, dtype=torch.int32) + 2
points = []
p0 = (random.random(), random.random())
points.append(p0)
for j in range(num_segments):
radius = 0.1
p1 = (p0[0] + radius * (random.random() - 0.5), p0[1] + radius * (random.random() - 0.5))
p2 = (p1[0] + radius * (random.random() - 0.5), p1[1] + radius * (random.random() - 0.5))
p3 = (p2[0] + radius * (random.random() - 0.5), p2[1] + radius * (random.random() - 0.5))
points.append(p1)
points.append(p2)
points.append(p3)
p0 = p3
points = torch.tensor(points).to(self.device)
points[:, 0] *= self.canvas_width
points[:, 1] *= self.canvas_height
path = pydiffvg.Path(num_control_points=num_control_points,
points=points,
stroke_width=torch.tensor(1.0),
is_closed=False)
self.strokes_counter += 1
return path
def clip_curve_shape(self):
for path in self.shapes:
path.stroke_width.data.clamp_(1.0, self.max_width)
for group in self.shape_groups:
group.stroke_color.data.clamp_(0.0, 1.0)
def set_parameters(self):
# stroke`s location and width optimization
self.point_vars = []
self.width_vars = []
for i, path in enumerate(self.shapes):
if self.optimize_flag[i]:
path.points.requires_grad = True
self.point_vars.append(path.points)
path.stroke_width.requires_grad = True
self.width_vars.append(path.stroke_width)
# for stroke' color optimization
self.color_vars = []
for i, group in enumerate(self.shape_groups):
if self.optimize_flag[i]:
group.stroke_color.requires_grad = True
self.color_vars.append(group.stroke_color)
return self.point_vars, self.width_vars, self.color_vars
def learnable_parameters(self):
return self.point_vars + self.width_vars + self.color_vars
def save_svg(self, output_dir, name):
pydiffvg.save_svg('{}/{}.svg'.format(output_dir, name),
self.canvas_width, self.canvas_height,
self.shapes, self.shape_groups)
class PainterOptimizer:
def __init__(self, renderer: Painter, points_lr: float, width_lr: float, color_lr: float):
self.renderer = renderer
self.points_lr = points_lr
self.width_lr = width_lr
self.color_lr = color_lr
self.points_optimizer, self.width_optimizer, self.color_optimizer = None, None, None
def init_optimizers(self):
point_vars, width_vars, color_vars = self.renderer.set_parameters()
self.points_optimizer = torch.optim.Adam(point_vars, lr=self.points_lr)
self.width_optimizer = torch.optim.Adam(width_vars, lr=self.width_lr)
self.color_optimizer = torch.optim.Adam(color_vars, lr=self.color_lr)
def update_lr(self, step, decay_steps=(500, 750)):
if step % decay_steps[0] == 0:
for param_group in self.points_optimizer.param_groups:
param_group['lr'] = 0.4
if step % decay_steps[1] == 0:
for param_group in self.points_optimizer.param_groups:
param_group['lr'] = 0.1
def zero_grad_(self):
self.points_optimizer.zero_grad()
self.width_optimizer.zero_grad()
self.color_optimizer.zero_grad()
def step_(self):
self.points_optimizer.step()
self.width_optimizer.step()
self.color_optimizer.step()
def get_lr(self):
return self.points_optimizer.param_groups[0]['lr']