hjc-owo
init repo
966ae59
# -*- coding: utf-8 -*-
# Copyright (c) XiMing Xing. All rights reserved.
# Author: XiMing Xing
# Description:
import PIL
from PIL import Image
from typing import Callable, List, Optional, Union, Tuple, AnyStr
import numpy as np
import torch
import torch.nn.functional as F
from torch.cuda.amp import custom_bwd, custom_fwd
from torchvision import transforms
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipeline
from pytorch_svgrender.token2attn.attn_control import AttentionStore
from pytorch_svgrender.token2attn.ptp_utils import text_under_image, view_images
class Token2AttnMixinASDSSDXLPipeline(StableDiffusionXLPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion XL.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
_optional_components = ["safety_checker", "feature_extractor"]
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
controller: AttentionStore = None, # feed attention_store as control of ptp
num_inference_steps: int = 50,
denoising_end: Optional[float] = None,
guidance_scale: float = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in both text-encoders
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
denoising_end (`float`, *optional*):
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
completed before it is intentionally prematurely terminated. As a result, the returned sample will
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
guidance_scale (`float`, *optional*, defaults to 5.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
negative_prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
of a plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
For most cases, `target_size` should be set to the desired height and width of the generated image. If
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
Examples:
Returns:
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
`tuple`. When returning a tuple, the first element is a list with the generated images.
"""
self.register_attention_control(controller) # add attention controller
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, prompt_2, height, width, callback_steps)
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
(
text_embeddings,
negative_text_embeddings,
pooled_text_embeddings,
negative_pooled_text_embeddings,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
try:
num_channels_latents = self.unet.config.in_channels
except Exception or Warning:
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
text_embeddings.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. inherit TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Prepare added time ids & embeddings
add_text_embeddings = pooled_text_embeddings
add_time_ids = self._get_add_time_ids(
original_size, crops_coords_top_left, target_size, dtype=text_embeddings.dtype
)
if do_classifier_free_guidance:
text_embeddings = torch.cat([negative_text_embeddings, text_embeddings], dim=0)
add_text_embeddings = torch.cat([negative_pooled_text_embeddings, add_text_embeddings], dim=0)
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
text_embeddings = text_embeddings.to(device)
add_text_embeddings = add_text_embeddings.to(device)
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
# 8. Denoising loop
# 8.1 Apply denoising_end
if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1:
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_end * self.scheduler.config.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
timesteps = timesteps[:num_inference_steps]
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
added_cond_kwargs = {"text_embeds": add_text_embeddings, "time_ids": add_time_ids}
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=text_embeddings,
added_cond_kwargs=added_cond_kwargs
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# step callback
latents = controller.step_callback(latents)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# 9. Post-processing
# The decode_latents method is deprecated and has been removed in sdxl
# image = self.decode_latents(latents)
# make sure the VAE is in float32 mode, as it overflows in float16
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
else:
image = latents
return StableDiffusionXLPipelineOutput(images=image)
# apply watermark if available
if self.watermark is not None:
image = self.watermark.apply_watermark(image)
image = self.image_processor.postprocess(image, output_type=output_type)
if not return_dict:
return (image,)
return StableDiffusionXLPipelineOutput(images=image)
def encode2latents(self,
image,
batch_size,
num_images_per_prompt,
dtype,
device,
generator=None):
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
# Offload text encoder if `enable_model_cpu_offload` was enabled
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.text_encoder_2.to("cpu")
torch.cuda.empty_cache()
image = image.to(device=device, dtype=dtype)
batch_size = batch_size * num_images_per_prompt
if image.shape[1] == 4:
init_latents = image
else:
# make sure the VAE is in float32 mode, as it overflows in float16
if self.vae.config.force_upcast:
image = image.float()
self.vae.to(dtype=torch.float32)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
elif isinstance(generator, list):
init_latents = [
self.vae.encode(image[i: i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
]
init_latents = torch.cat(init_latents, dim=0)
else:
init_latents = self.vae.encode(image).latent_dist.sample(generator)
if self.vae.config.force_upcast:
self.vae.to(dtype)
init_latents = init_latents.to(dtype)
init_latents = self.vae.config.scaling_factor * init_latents
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
# expand init_latents for batch_size
additional_image_per_prompt = batch_size // init_latents.shape[0]
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
)
else:
init_latents = torch.cat([init_latents], dim=0)
latents = init_latents
return latents
@staticmethod
def S_aug(sketch: torch.Tensor,
im_res: int = 1024,
augments: str = "affine_contrast"):
# init augmentations
augment_list = []
if "affine" in augments:
augment_list.append(
transforms.RandomPerspective(fill=0, p=1.0, distortion_scale=0.5)
)
augment_list.append(
transforms.RandomResizedCrop(im_res, scale=(0.8, 0.8), ratio=(1.0, 1.0))
)
if "contrast" in augments:
# 2: increases the sharpness by a factor of 2.
augment_list.append(
transforms.RandomAdjustSharpness(sharpness_factor=2)
)
augment_compose = transforms.Compose(augment_list)
return augment_compose(sketch)
def score_distillation_sampling(self,
pred_rgb: torch.Tensor,
crop_size: int,
augments: str,
prompt: Union[List, str],
prompt_2: Optional[Union[List, str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
negative_prompt: Union[List, str] = None,
negative_prompt_2: Optional[Union[List, str]] = None,
guidance_scale: float = 100,
as_latent: bool = False,
grad_scale: float = 1,
t_range: Union[List[float], Tuple[float]] = (0.05, 0.95),
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None):
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
batch_size = 1 if isinstance(prompt, str) else len(prompt)
num_train_timesteps = self.scheduler.config.num_train_timesteps
min_step = int(num_train_timesteps * t_range[0])
max_step = int(num_train_timesteps * t_range[1])
alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience
num_images_per_prompt = 1 # the number of images to generate per prompt
# Encode input prompt
do_classifier_free_guidance = guidance_scale > 1.0
(
text_embeddings,
negative_text_embeddings,
pooled_text_embeddings,
negative_pooled_text_embeddings,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
device=self.device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
)
# sketch augmentation
pred_rgb_a = self.S_aug(pred_rgb, crop_size, augments)
# interp to 512x512 to be fed into vae.
if as_latent:
latents = F.interpolate(pred_rgb_a, (128, 128), mode='bilinear', align_corners=False) * 2 - 1
else:
# encode image into latents via vae, requires grad!
latents = self.encode2latents(
pred_rgb_a,
batch_size,
num_images_per_prompt,
text_embeddings.dtype,
self.device
)
# timestep ~ U(0.05, 0.95) to avoid very high/low noise level
t = torch.randint(min_step, max_step + 1, [1], dtype=torch.long, device=self.device)
# 7. Prepare added time ids & embeddings
add_text_embeddings = pooled_text_embeddings
add_time_ids = self._get_add_time_ids(
original_size, crops_coords_top_left, target_size, dtype=text_embeddings.dtype
)
if do_classifier_free_guidance:
text_embeddings = torch.cat([negative_text_embeddings, text_embeddings], dim=0)
add_text_embeddings = torch.cat([negative_pooled_text_embeddings, add_text_embeddings], dim=0)
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
text_embeddings = text_embeddings.to(self.device)
add_text_embeddings = add_text_embeddings.to(self.device)
add_time_ids = add_time_ids.to(self.device).repeat(batch_size * num_images_per_prompt, 1)
# predict the noise residual with unet, stop gradient
with torch.no_grad():
# add noise
noise = torch.randn_like(latents)
latents_noisy = self.scheduler.add_noise(latents, noise, t)
# pred noise
latent_model_input = torch.cat([latents_noisy] * 2) if do_classifier_free_guidance else latents_noisy
# predict the noise residual
added_cond_kwargs = {"text_embeds": add_text_embeddings, "time_ids": add_time_ids}
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=text_embeddings,
added_cond_kwargs=added_cond_kwargs
).sample
# perform guidance (high scale from paper!)
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_pos = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_pos - noise_pred_uncond)
# w(t), sigma_t^2
w = (1 - alphas[t])
grad = grad_scale * w * (noise_pred - noise)
grad = torch.nan_to_num(grad)
# since we omitted an item in grad, we need to use the custom function to specify the gradient
loss = SpecifyGradient.apply(latents, grad)
return loss, grad.mean()
def register_attention_control(self, controller):
attn_procs = {}
cross_att_count = 0
for name in self.unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = self.unet.config.block_out_channels[-1]
place_in_unet = "mid"
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id]
place_in_unet = "up"
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = self.unet.config.block_out_channels[block_id]
place_in_unet = "down"
else:
continue
cross_att_count += 1
attn_procs[name] = P2PCrossAttnProcessor(
controller=controller, place_in_unet=place_in_unet
)
self.unet.set_attn_processor(attn_procs)
controller.num_att_layers = cross_att_count
@staticmethod
def aggregate_attention(prompts,
attention_store: AttentionStore,
res: int,
from_where: List[str],
is_cross: bool,
select: int):
if isinstance(prompts, str):
prompts = [prompts]
assert isinstance(prompts, list)
out = []
attention_maps = attention_store.get_average_attention()
num_pixels = res ** 2
for location in from_where:
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
if item.shape[1] == num_pixels:
cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select]
out.append(cross_maps)
out = torch.cat(out, dim=0)
out = out.sum(0) / out.shape[0]
return out.cpu()
def get_cross_attention(self,
prompts,
attention_store: AttentionStore,
res: int,
from_where: List[str],
select: int = 0,
save_path=None):
tokens = self.tokenizer.encode(prompts[select])
decoder = self.tokenizer.decode
# shape: [res ** 2, res ** 2, seq_len]
attention_maps = self.aggregate_attention(prompts, attention_store, res, from_where, True, select)
images = []
for i in range(len(tokens)):
image = attention_maps[:, :, i]
image = 255 * image / image.max()
image = image.unsqueeze(-1).expand(*image.shape, 3)
image = image.numpy().astype(np.uint8)
image = np.array(Image.fromarray(image).resize((256, 256)))
image = text_under_image(image, decoder(int(tokens[i])))
images.append(image)
image_array = np.stack(images, axis=0)
view_images(image_array, save_image=True, fp=save_path)
return attention_maps, tokens
def get_self_attention_comp(self,
prompts,
attention_store: AttentionStore,
res: int,
from_where: List[str],
img_size: int = 224,
max_com=10,
select: int = 0,
save_path: AnyStr = None):
attention_maps = self.aggregate_attention(prompts, attention_store, res, from_where, False, select)
attention_maps = attention_maps.numpy().reshape((res ** 2, res ** 2))
# shape: [res ** 2, res ** 2]
u, s, vh = np.linalg.svd(attention_maps - np.mean(attention_maps, axis=1, keepdims=True))
print(f"self-attention_maps: {attention_maps.shape}, "
f"u: {u.shape}, "
f"s: {s.shape}, "
f"vh: {vh.shape}")
images = []
vh_returns = []
for i in range(max_com):
image = vh[i].reshape(res, res)
image = (image - image.min()) / (image.max() - image.min())
image = 255 * image
ret_ = Image.fromarray(image).resize((img_size, img_size), resample=PIL.Image.Resampling.BILINEAR)
vh_returns.append(np.array(ret_))
image = np.repeat(np.expand_dims(image, axis=2), 3, axis=2).astype(np.uint8)
image = Image.fromarray(image).resize((256, 256))
image = np.array(image)
images.append(image)
image_array = np.stack(images, axis=0)
view_images(image_array, num_rows=max_com // 10, offset_ratio=0,
save_image=True, fp=save_path / "self-attn-vh.png")
return attention_maps, (u, s, vh), np.stack(vh_returns, axis=0)
class P2PCrossAttnProcessor:
def __init__(self, controller, place_in_unet):
super().__init__()
self.controller = controller
self.place_in_unet = place_in_unet
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size=batch_size)
query = attn.to_q(hidden_states)
is_cross = encoder_hidden_states is not None
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
# one line change
self.controller(attention_probs, is_cross, self.place_in_unet)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class SpecifyGradient(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, input_tensor, gt_grad):
ctx.save_for_backward(gt_grad)
# we return a dummy value 1, which will be scaled by amp's scaler so we get the scale in backward.
return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype)
@staticmethod
@custom_bwd
def backward(ctx, grad_scale):
gt_grad, = ctx.saved_tensors
gt_grad = gt_grad * grad_scale
return gt_grad, None