Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
# Copyright (c) XiMing Xing. All rights reserved. | |
# Author: XiMing Xing | |
# Description: | |
import PIL | |
from PIL import Image | |
from typing import Callable, List, Optional, Union, Tuple, AnyStr | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch.cuda.amp import custom_bwd, custom_fwd | |
from torchvision import transforms | |
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput | |
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipeline | |
from pytorch_svgrender.token2attn.attn_control import AttentionStore | |
from pytorch_svgrender.token2attn.ptp_utils import text_under_image, view_images | |
class Token2AttnMixinASDSSDXLPipeline(StableDiffusionXLPipeline): | |
r""" | |
Pipeline for text-to-image generation using Stable Diffusion XL. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. Stable Diffusion uses the text portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
safety_checker ([`StableDiffusionSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offensive or harmful. | |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | |
feature_extractor ([`CLIPFeatureExtractor`]): | |
Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
""" | |
_optional_components = ["safety_checker", "feature_extractor"] | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
controller: AttentionStore = None, # feed attention_store as control of ptp | |
num_inference_steps: int = 50, | |
denoising_end: Optional[float] = None, | |
guidance_scale: float = 5.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
original_size: Optional[Tuple[int, int]] = None, | |
crops_coords_top_left: Tuple[int, int] = (0, 0), | |
target_size: Optional[Tuple[int, int]] = None, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
used in both text-encoders | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
denoising_end (`float`, *optional*): | |
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be | |
completed before it is intentionally prematurely terminated. As a result, the returned sample will | |
still retain a substantial amount of noise as determined by the discrete timesteps selected by the | |
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a | |
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image | |
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) | |
guidance_scale (`float`, *optional*, defaults to 5.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
negative_prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | |
of a plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. | |
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as | |
explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | |
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | |
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | |
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
For most cases, `target_size` should be set to the desired height and width of the generated image. If | |
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in | |
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a | |
`tuple`. When returning a tuple, the first element is a list with the generated images. | |
""" | |
self.register_attention_control(controller) # add attention controller | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
original_size = original_size or (height, width) | |
target_size = target_size or (height, width) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs(prompt, prompt_2, height, width, callback_steps) | |
# 2. Define call parameters | |
batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
( | |
text_embeddings, | |
negative_text_embeddings, | |
pooled_text_embeddings, | |
negative_pooled_text_embeddings, | |
) = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
negative_prompt_2=negative_prompt_2, | |
) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latent variables | |
try: | |
num_channels_latents = self.unet.config.in_channels | |
except Exception or Warning: | |
num_channels_latents = self.unet.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
text_embeddings.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. inherit TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Prepare added time ids & embeddings | |
add_text_embeddings = pooled_text_embeddings | |
add_time_ids = self._get_add_time_ids( | |
original_size, crops_coords_top_left, target_size, dtype=text_embeddings.dtype | |
) | |
if do_classifier_free_guidance: | |
text_embeddings = torch.cat([negative_text_embeddings, text_embeddings], dim=0) | |
add_text_embeddings = torch.cat([negative_pooled_text_embeddings, add_text_embeddings], dim=0) | |
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) | |
text_embeddings = text_embeddings.to(device) | |
add_text_embeddings = add_text_embeddings.to(device) | |
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | |
# 8. Denoising loop | |
# 8.1 Apply denoising_end | |
if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1: | |
discrete_timestep_cutoff = int( | |
round( | |
self.scheduler.config.num_train_timesteps | |
- (denoising_end * self.scheduler.config.num_train_timesteps) | |
) | |
) | |
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | |
timesteps = timesteps[:num_inference_steps] | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
added_cond_kwargs = {"text_embeds": add_text_embeddings, "time_ids": add_time_ids} | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=text_embeddings, | |
added_cond_kwargs=added_cond_kwargs | |
).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# step callback | |
latents = controller.step_callback(latents) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
# 9. Post-processing | |
# The decode_latents method is deprecated and has been removed in sdxl | |
# image = self.decode_latents(latents) | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: | |
self.upcast_vae() | |
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
if not output_type == "latent": | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
else: | |
image = latents | |
return StableDiffusionXLPipelineOutput(images=image) | |
# apply watermark if available | |
if self.watermark is not None: | |
image = self.watermark.apply_watermark(image) | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
if not return_dict: | |
return (image,) | |
return StableDiffusionXLPipelineOutput(images=image) | |
def encode2latents(self, | |
image, | |
batch_size, | |
num_images_per_prompt, | |
dtype, | |
device, | |
generator=None): | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
# Offload text encoder if `enable_model_cpu_offload` was enabled | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.text_encoder_2.to("cpu") | |
torch.cuda.empty_cache() | |
image = image.to(device=device, dtype=dtype) | |
batch_size = batch_size * num_images_per_prompt | |
if image.shape[1] == 4: | |
init_latents = image | |
else: | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
if self.vae.config.force_upcast: | |
image = image.float() | |
self.vae.to(dtype=torch.float32) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
elif isinstance(generator, list): | |
init_latents = [ | |
self.vae.encode(image[i: i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) | |
] | |
init_latents = torch.cat(init_latents, dim=0) | |
else: | |
init_latents = self.vae.encode(image).latent_dist.sample(generator) | |
if self.vae.config.force_upcast: | |
self.vae.to(dtype) | |
init_latents = init_latents.to(dtype) | |
init_latents = self.vae.config.scaling_factor * init_latents | |
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: | |
# expand init_latents for batch_size | |
additional_image_per_prompt = batch_size // init_latents.shape[0] | |
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) | |
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: | |
raise ValueError( | |
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | |
) | |
else: | |
init_latents = torch.cat([init_latents], dim=0) | |
latents = init_latents | |
return latents | |
def S_aug(sketch: torch.Tensor, | |
im_res: int = 1024, | |
augments: str = "affine_contrast"): | |
# init augmentations | |
augment_list = [] | |
if "affine" in augments: | |
augment_list.append( | |
transforms.RandomPerspective(fill=0, p=1.0, distortion_scale=0.5) | |
) | |
augment_list.append( | |
transforms.RandomResizedCrop(im_res, scale=(0.8, 0.8), ratio=(1.0, 1.0)) | |
) | |
if "contrast" in augments: | |
# 2: increases the sharpness by a factor of 2. | |
augment_list.append( | |
transforms.RandomAdjustSharpness(sharpness_factor=2) | |
) | |
augment_compose = transforms.Compose(augment_list) | |
return augment_compose(sketch) | |
def score_distillation_sampling(self, | |
pred_rgb: torch.Tensor, | |
crop_size: int, | |
augments: str, | |
prompt: Union[List, str], | |
prompt_2: Optional[Union[List, str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
negative_prompt: Union[List, str] = None, | |
negative_prompt_2: Optional[Union[List, str]] = None, | |
guidance_scale: float = 100, | |
as_latent: bool = False, | |
grad_scale: float = 1, | |
t_range: Union[List[float], Tuple[float]] = (0.05, 0.95), | |
original_size: Optional[Tuple[int, int]] = None, | |
crops_coords_top_left: Tuple[int, int] = (0, 0), | |
target_size: Optional[Tuple[int, int]] = None): | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
original_size = original_size or (height, width) | |
target_size = target_size or (height, width) | |
batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
num_train_timesteps = self.scheduler.config.num_train_timesteps | |
min_step = int(num_train_timesteps * t_range[0]) | |
max_step = int(num_train_timesteps * t_range[1]) | |
alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience | |
num_images_per_prompt = 1 # the number of images to generate per prompt | |
# Encode input prompt | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
( | |
text_embeddings, | |
negative_text_embeddings, | |
pooled_text_embeddings, | |
negative_pooled_text_embeddings, | |
) = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
device=self.device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
negative_prompt_2=negative_prompt_2, | |
) | |
# sketch augmentation | |
pred_rgb_a = self.S_aug(pred_rgb, crop_size, augments) | |
# interp to 512x512 to be fed into vae. | |
if as_latent: | |
latents = F.interpolate(pred_rgb_a, (128, 128), mode='bilinear', align_corners=False) * 2 - 1 | |
else: | |
# encode image into latents via vae, requires grad! | |
latents = self.encode2latents( | |
pred_rgb_a, | |
batch_size, | |
num_images_per_prompt, | |
text_embeddings.dtype, | |
self.device | |
) | |
# timestep ~ U(0.05, 0.95) to avoid very high/low noise level | |
t = torch.randint(min_step, max_step + 1, [1], dtype=torch.long, device=self.device) | |
# 7. Prepare added time ids & embeddings | |
add_text_embeddings = pooled_text_embeddings | |
add_time_ids = self._get_add_time_ids( | |
original_size, crops_coords_top_left, target_size, dtype=text_embeddings.dtype | |
) | |
if do_classifier_free_guidance: | |
text_embeddings = torch.cat([negative_text_embeddings, text_embeddings], dim=0) | |
add_text_embeddings = torch.cat([negative_pooled_text_embeddings, add_text_embeddings], dim=0) | |
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) | |
text_embeddings = text_embeddings.to(self.device) | |
add_text_embeddings = add_text_embeddings.to(self.device) | |
add_time_ids = add_time_ids.to(self.device).repeat(batch_size * num_images_per_prompt, 1) | |
# predict the noise residual with unet, stop gradient | |
with torch.no_grad(): | |
# add noise | |
noise = torch.randn_like(latents) | |
latents_noisy = self.scheduler.add_noise(latents, noise, t) | |
# pred noise | |
latent_model_input = torch.cat([latents_noisy] * 2) if do_classifier_free_guidance else latents_noisy | |
# predict the noise residual | |
added_cond_kwargs = {"text_embeds": add_text_embeddings, "time_ids": add_time_ids} | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=text_embeddings, | |
added_cond_kwargs=added_cond_kwargs | |
).sample | |
# perform guidance (high scale from paper!) | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_pos = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_pos - noise_pred_uncond) | |
# w(t), sigma_t^2 | |
w = (1 - alphas[t]) | |
grad = grad_scale * w * (noise_pred - noise) | |
grad = torch.nan_to_num(grad) | |
# since we omitted an item in grad, we need to use the custom function to specify the gradient | |
loss = SpecifyGradient.apply(latents, grad) | |
return loss, grad.mean() | |
def register_attention_control(self, controller): | |
attn_procs = {} | |
cross_att_count = 0 | |
for name in self.unet.attn_processors.keys(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = self.unet.config.block_out_channels[-1] | |
place_in_unet = "mid" | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id] | |
place_in_unet = "up" | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = self.unet.config.block_out_channels[block_id] | |
place_in_unet = "down" | |
else: | |
continue | |
cross_att_count += 1 | |
attn_procs[name] = P2PCrossAttnProcessor( | |
controller=controller, place_in_unet=place_in_unet | |
) | |
self.unet.set_attn_processor(attn_procs) | |
controller.num_att_layers = cross_att_count | |
def aggregate_attention(prompts, | |
attention_store: AttentionStore, | |
res: int, | |
from_where: List[str], | |
is_cross: bool, | |
select: int): | |
if isinstance(prompts, str): | |
prompts = [prompts] | |
assert isinstance(prompts, list) | |
out = [] | |
attention_maps = attention_store.get_average_attention() | |
num_pixels = res ** 2 | |
for location in from_where: | |
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: | |
if item.shape[1] == num_pixels: | |
cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select] | |
out.append(cross_maps) | |
out = torch.cat(out, dim=0) | |
out = out.sum(0) / out.shape[0] | |
return out.cpu() | |
def get_cross_attention(self, | |
prompts, | |
attention_store: AttentionStore, | |
res: int, | |
from_where: List[str], | |
select: int = 0, | |
save_path=None): | |
tokens = self.tokenizer.encode(prompts[select]) | |
decoder = self.tokenizer.decode | |
# shape: [res ** 2, res ** 2, seq_len] | |
attention_maps = self.aggregate_attention(prompts, attention_store, res, from_where, True, select) | |
images = [] | |
for i in range(len(tokens)): | |
image = attention_maps[:, :, i] | |
image = 255 * image / image.max() | |
image = image.unsqueeze(-1).expand(*image.shape, 3) | |
image = image.numpy().astype(np.uint8) | |
image = np.array(Image.fromarray(image).resize((256, 256))) | |
image = text_under_image(image, decoder(int(tokens[i]))) | |
images.append(image) | |
image_array = np.stack(images, axis=0) | |
view_images(image_array, save_image=True, fp=save_path) | |
return attention_maps, tokens | |
def get_self_attention_comp(self, | |
prompts, | |
attention_store: AttentionStore, | |
res: int, | |
from_where: List[str], | |
img_size: int = 224, | |
max_com=10, | |
select: int = 0, | |
save_path: AnyStr = None): | |
attention_maps = self.aggregate_attention(prompts, attention_store, res, from_where, False, select) | |
attention_maps = attention_maps.numpy().reshape((res ** 2, res ** 2)) | |
# shape: [res ** 2, res ** 2] | |
u, s, vh = np.linalg.svd(attention_maps - np.mean(attention_maps, axis=1, keepdims=True)) | |
print(f"self-attention_maps: {attention_maps.shape}, " | |
f"u: {u.shape}, " | |
f"s: {s.shape}, " | |
f"vh: {vh.shape}") | |
images = [] | |
vh_returns = [] | |
for i in range(max_com): | |
image = vh[i].reshape(res, res) | |
image = (image - image.min()) / (image.max() - image.min()) | |
image = 255 * image | |
ret_ = Image.fromarray(image).resize((img_size, img_size), resample=PIL.Image.Resampling.BILINEAR) | |
vh_returns.append(np.array(ret_)) | |
image = np.repeat(np.expand_dims(image, axis=2), 3, axis=2).astype(np.uint8) | |
image = Image.fromarray(image).resize((256, 256)) | |
image = np.array(image) | |
images.append(image) | |
image_array = np.stack(images, axis=0) | |
view_images(image_array, num_rows=max_com // 10, offset_ratio=0, | |
save_image=True, fp=save_path / "self-attn-vh.png") | |
return attention_maps, (u, s, vh), np.stack(vh_returns, axis=0) | |
class P2PCrossAttnProcessor: | |
def __init__(self, controller, place_in_unet): | |
super().__init__() | |
self.controller = controller | |
self.place_in_unet = place_in_unet | |
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None): | |
batch_size, sequence_length, _ = hidden_states.shape | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size=batch_size) | |
query = attn.to_q(hidden_states) | |
is_cross = encoder_hidden_states is not None | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
# one line change | |
self.controller(attention_probs, is_cross, self.place_in_unet) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
return hidden_states | |
class SpecifyGradient(torch.autograd.Function): | |
def forward(ctx, input_tensor, gt_grad): | |
ctx.save_for_backward(gt_grad) | |
# we return a dummy value 1, which will be scaled by amp's scaler so we get the scale in backward. | |
return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype) | |
def backward(ctx, grad_scale): | |
gt_grad, = ctx.saved_tensors | |
gt_grad = gt_grad * grad_scale | |
return gt_grad, None | |