import torch def area(a, b, c): return (c[1] - a[1]) * (b[0] - a[0]) - (b[1] - a[1]) * (c[0] - a[0]) def triangle_area(A, B, C): out = (C - A).flip([-1]) * (B - A) out = out[..., 1] - out[..., 0] return out def compute_sine_theta(s1, s2): # s1 and s2 aret two segments to be uswed # s1, s2 (2, 2) v1 = s1[1, :] - s1[0, :] v2 = s2[1, :] - s2[0, :] # print(v1, v2) sine_theta = (v1[0] * v2[1] - v1[1] * v2[0]) / (torch.norm(v1) * torch.norm(v2)) return sine_theta def xing_loss_fn(x_list, scale=1e-3): # x[npoints, 2] loss = 0. # print(f"points_len: {len(x_list)}") for x in x_list: # print(f"x: {x}") seg_loss = 0. N = x.size()[0] assert N % 3 == 0, f'The segment number ({N}) is not correct!' x = torch.cat([x, x[0, :].unsqueeze(0)], dim=0) # (N+1,2) segments = torch.cat([x[:-1, :].unsqueeze(1), x[1:, :].unsqueeze(1)], dim=1) # (N, start/end, 2) segment_num = int(N / 3) for i in range(segment_num): cs1 = segments[i * 3, :, :] # start control segs cs2 = segments[i * 3 + 1, :, :] # middle control segs cs3 = segments[i * 3 + 2, :, :] # end control segs # print('the direction of the vectors:') # print(compute_sine_theta(cs1, cs2)) direct = (compute_sine_theta(cs1, cs2) >= 0).float() opst = 1 - direct # another direction sina = compute_sine_theta(cs1, cs3) # the angle between cs1 and cs3 seg_loss += direct * torch.relu(- sina) + opst * torch.relu(sina) # print(direct, opst, sina) seg_loss /= segment_num templ = seg_loss loss += templ * scale # area_loss * scale return loss / (len(x_list)) if __name__ == "__main__": # x = torch.rand([6, 2]) # x = torch.tensor([[0,0], [1,1], [2,1], [1.5,0]]) x = torch.tensor([[0, 0], [1, 1], [2, 1], [0.5, 0]]) # x = torch.tensor([[1,0], [2,1], [0,1], [2,0]]) scale = 1 # 0.5 y = xing_loss_fn([x], scale) print(y) x = torch.tensor([[0, 0], [1, 1], [2, 1], [2., 0]]) # x = torch.tensor([[1,0], [2,1], [0,1], [2,0]]) scale = 1 # 0.5 y = xing_loss_fn([x], scale) print(y)