# -*- coding: utf-8 -*- # Author: ximing # Description: inpaint_util # Copyright (c) 2023, XiMing Xing. # License: MIT License import os import pathlib import cv2 import numpy as np from omegaconf import OmegaConf from tqdm import trange import torch from torch.utils.data._utils.collate import default_collate def apply_lama_inpaint(predict_config, device): # local import from lama.saicinpainting.evaluation.utils import move_to_device from lama.saicinpainting.evaluation.refinement import refine_predict from lama.saicinpainting.training.data.datasets import make_default_val_dataset from lama.saicinpainting.training.trainers import load_checkpoint try: train_config_path = pathlib.Path(predict_config.model.path) / 'config.yaml' train_config = OmegaConf.load(train_config_path) train_config.training_model.predict_only = True train_config.visualizer.kind = 'noop' out_ext = predict_config.get('out_ext', '.png') checkpoint_path = os.path.join( predict_config.model.path, 'models', predict_config.model.checkpoint ) model = load_checkpoint(train_config, checkpoint_path, strict=False, map_location='cpu') model.freeze() if not predict_config.get('refine', False): model.to(device) if not predict_config.indir.endswith('/'): predict_config.indir += '/' dataset = make_default_val_dataset(predict_config.indir, **predict_config.dataset) for img_i in trange(len(dataset)): mask_fname = dataset.mask_filenames[img_i] cur_out_fname = os.path.join( predict_config.outdir, os.path.splitext(mask_fname[len(predict_config.indir):])[0] + out_ext ) os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True) batch = default_collate([dataset[img_i]]) if predict_config.get('refine', False): assert 'unpad_to_size' in batch, "Unpadded size is required for the refinement" # image unpadding is taken care of in the refiner, so that output image # is same size as the input image cur_res = refine_predict(batch, model, **predict_config.refiner) cur_res = cur_res[0].permute(1, 2, 0).detach().cpu().numpy() else: with torch.no_grad(): batch = move_to_device(batch, device) batch['mask'] = (batch['mask'] > 0) * 1 batch = model(batch) cur_res = batch[predict_config.out_key][0].permute(1, 2, 0).detach().cpu().numpy() unpad_to_size = batch.get('unpad_to_size', None) if unpad_to_size is not None: orig_height, orig_width = unpad_to_size cur_res = cur_res[:orig_height, :orig_width] cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8') cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR) cv2.imwrite(cur_out_fname, cur_res) except KeyboardInterrupt: print('Interrupted by user') except Exception as ex: print(f'Prediction failed due to:') print(f'{ex}') import sys sys.exit(1)