from pathlib import Path import cv2 import numpy as np import torch import tqdm import yaml from lama.saicinpainting.evaluation.refinement import refine_predict from lama.saicinpainting.evaluation.utils import move_to_device from lama.saicinpainting.training.data.datasets import make_default_val_dataset from lama.saicinpainting.training.trainers import load_checkpoint from omegaconf import OmegaConf from torch.utils.data._utils.collate import default_collate def apply_inpaint(scene_path, background_path, device): conf = OmegaConf.load('lama/configs/prediction/default.yaml') model_path = Path("lama/big-lama") train_config_path = model_path / 'config.yaml' with open(train_config_path, 'r') as f: train_config = OmegaConf.create(yaml.safe_load(f)) train_config.training_model.predict_only = True train_config.visualizer.kind = 'noop' out_ext = conf.get('out_ext', '.png') checkpoint_path = model_path / 'models' / conf.model.checkpoint model = load_checkpoint(train_config, checkpoint_path, strict=False, map_location='cpu') model.freeze() if not conf.get('refine', False): model.to(device) dataset = make_default_val_dataset(scene_path, **conf.dataset) for img_i in tqdm.trange(len(dataset)): mask_fname = Path(dataset.mask_filenames[img_i]) relative_fname = mask_fname.relative_to(scene_path).with_suffix(out_ext) cur_out_fname = background_path / relative_fname cur_out_fname.parent.mkdir(parents=True, exist_ok=True) batch = default_collate([dataset[img_i]]) if conf.get('refine', False): assert 'unpad_to_size' in batch, "Unpadded size is required for the refinement" # image unpadding is taken care of in the refiner, so that output image # is same size as the input image cur_res = refine_predict(batch, model, **conf.refiner) cur_res = cur_res[0].permute(1, 2, 0).detach().cpu().numpy() else: with torch.no_grad(): batch = move_to_device(batch, device) batch['mask'] = (batch['mask'] > 0) * 1 batch = model(batch) cur_res = batch[conf.out_key][0].permute(1, 2, 0).detach().cpu().numpy() unpad_to_size = batch.get('unpad_to_size', None) if unpad_to_size is not None: orig_height, orig_width = unpad_to_size cur_res = cur_res[:orig_height, :orig_width] cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8') cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR) cv2.imwrite(cur_out_fname.as_posix(), cur_res)