license_plate_recognition / utils /iqa_recognize.py
zxbsmk's picture
Duplicate from zxbsmk/license_plate_recognition
d94f42d
import numpy as np
import cv2
import torch
from PIL import Image
import termcolor
from glob import glob
template_dir = "character_template"
char_info = {
"character_template/e.png": "鄂", "character_template/gui.png": "桂",
"character_template/hei.png": "黑", "character_template/ji.png": "冀",
"character_template/gui1.png": "贵", "character_template/jing.png": "京",
"character_template/lu.png": "鲁", "character_template/min.png": "闽",
"character_template/su.png": "苏", "character_template/wan.png": "皖",
"character_template/yu.png": "豫", "character_template/yue.png": "粤",
"character_template/xin.png": "新", "character_template/chuan.jpg": "川",
"character_template/ji1.jpg": "吉", "character_template/jin.jpg": "津",
"character_template/liao.jpg": "辽", "character_template/shan.jpg": "陕",
"character_template/zhe.jpg": "浙", "character_template/meng.jpg": "蒙",
}
char_list = list(char_info.values())
character_image_list = []
for template_path in char_info.keys():
character_image = Image.open(template_path).convert('RGB')
character_image_list.append(character_image)
print(f"Support Chinese characters: {termcolor.colored(char_list, 'blue')}")
def calculate_correlation(image1: Image.Image, image2: Image.Image):
image1 = np.array(image1)
image2 = np.array(image2)
image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
image2 = cv2.resize(image2, (image1.shape[1], image1.shape[0]))
image1_flat = image1.flatten()
image2_flat = image2.flatten()
correlation = np.corrcoef(image1_flat, image2_flat)[0, 1]
return correlation
def calculate_sift(image1: Image.Image, image2: Image.Image):
image1 = np.array(image1)
image2 = np.array(image2)
image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
image2 = cv2.resize(image2, (image1.shape[1], image1.shape[0]))
sift = cv2.SIFT_create()
kp1, des1 = sift.detectAndCompute(image1, None)
kp2, des2 = sift.detectAndCompute(image2, None)
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1, des2, k=2)
good = []
for m, n in matches:
if m.distance < 0.75 * n.distance:
good.append(m)
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
if len(good) < 4:
return len(good)
homography, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
inlier_matches = [m for i, m in enumerate(good) if mask[i] == 1]
return len(inlier_matches)
def recognize_chinese_char(image: Image.Image, image_path: str=None, print_probs=False):
if image_path is not None:
image = Image.open(image_path).convert('RGB')
score_list = []
for character_image in character_image_list:
score_list.append(calculate_sift(image, character_image))
char_index = np.array(score_list).argmax()
if print_probs:
prob_dict = dict(zip(char_list, score_list))
print(f"Label probs: {termcolor.colored(prob_dict, 'red')}")
return char_list[char_index]
if __name__ == "__main__":
img_paths = glob(f"cut_plate/*.jpg") + glob(f"cut_plate/*.png") + glob(f"cut_plate/*.jpeg")
for image_path in img_paths:
print(image_path, recognize_chinese_char(None, image_path))