Spaces:
Running
Running
File size: 11,535 Bytes
a87bc00 bcf08f8 a87bc00 2cc0cb0 a87bc00 cd8ad01 529eea1 bcf08f8 7b11062 d887fe7 a87bc00 bcf08f8 a87bc00 c27c36d a87bc00 bcf08f8 029ffc9 bcf08f8 f18a30e 63ec771 a92d4d8 08c56ef a92d4d8 bcf08f8 029ffc9 bcf08f8 2cc0cb0 bcf08f8 97be419 bcf08f8 a87bc00 bcf08f8 a87bc00 bcf08f8 a87bc00 bcf08f8 a87bc00 bcf08f8 a87bc00 bcf08f8 029ffc9 bcf08f8 029ffc9 bcf08f8 029ffc9 bcf08f8 029ffc9 a87bc00 bcf08f8 029ffc9 bcf08f8 d5beb0e bcf08f8 54ed831 bcf08f8 54ed831 bcf08f8 54ed831 bcf08f8 2cc0cb0 54ed831 bcf08f8 54ed831 878b4f2 bcf08f8 54ed831 bcf08f8 54ed831 bcf08f8 7a966d7 bcf08f8 6542f5d bcf08f8 1df8bb0 bcf08f8 1df8bb0 bcf08f8 a87bc00 bcf08f8 884d940 bcf08f8 3130a75 6542f5d de45d29 029ffc9 bcf08f8 029ffc9 bcf08f8 029ffc9 bcf08f8 029ffc9 bcf08f8 029ffc9 bcf08f8 029ffc9 bcf08f8 029ffc9 bcf08f8 029ffc9 bcf08f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import random
import matplotlib.pyplot as plt
import nltk
from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from nltk.text import Text
from nltk.probability import FreqDist
from cleantext import clean
import textract
import urllib.request
from io import BytesIO
import sys
import pandas as pd
import cv2
import re
from wordcloud import WordCloud, ImageColorGenerator
from textblob import TextBlob
from PIL import Image
import os
import gradio as gr
from dotenv import load_dotenv
import groq
import json
import traceback
import numpy as np
import unidecode
import contractions
from sklearn.feature_extraction.text import TfidfVectorizer
# Load environment variables
load_dotenv()
# Download NLTK resources
nltk.download(['stopwords', 'wordnet', 'words'])
nltk.download('punkt')
nltk.download('punkt_tab')
# Initialize Groq client
groq_api_key = os.getenv("GROQ_API_KEY")
groq_client = groq.Groq(api_key=groq_api_key) if groq_api_key else None
# Stopwords customization
stop_words = set(stopwords.words('english'))
stop_words.update('ask','much','thank','etc.', 'e', 'We', 'In', 'ed','pa', 'This','also', 'A', 'fu','To','5','ing', 'er', '2')
# --- Parsing & Preprocessing Functions ---
def Parsing(parsed_text):
try:
if hasattr(parsed_text, 'name'):
file_path = parsed_text.name
else:
file_path = parsed_text
raw_party = textract.process(file_path, encoding='ascii', method='pdfminer')
return clean(raw_party)
except Exception as e:
print(f"Error parsing PDF: {e}")
return f"Error parsing PDF: {e}"
def clean_text(text):
text = text.encode("ascii", errors="ignore").decode("ascii")
text = unidecode.unidecode(text)
text = contractions.fix(text)
text = re.sub(r"\n", " ", text)
text = re.sub(r"\t", " ", text)
text = re.sub(r"/ ", " ", text)
text = text.strip()
text = re.sub(" +", " ", text).strip()
text = [word for word in text.split() if word not in stop_words]
return ' '.join(text)
def Preprocess(textParty):
text1Party = re.sub('[^A-Za-z0-9]+', ' ', textParty)
pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) + r')\b\s*')
text2Party = pattern.sub('', text1Party)
return text2Party
# --- Core Analysis Functions ---
def generate_summary(text):
if not groq_client:
return "Summarization is not available. Please set up your GROQ_API_KEY in the .env file."
if len(text) > 10000:
text = text[:10000]
try:
completion = groq_client.chat.completions.create(
model="llama3-8b-8192",
messages=[
{"role": "system", "content": "You are a helpful assistant that summarizes political manifestos. Provide a concise, objective summary that captures the key policy proposals, themes, and promises in the manifesto."},
{"role": "user", "content": f"Please summarize the following political manifesto text in about 300-500 words, focusing on the main policy areas, promises, and themes:\n\n{text}"}
],
temperature=0.3,
max_tokens=800
)
return completion.choices[0].message.content
except Exception as e:
return f"Error generating summary: {str(e)}"
def fDistance(text2Party):
word_tokens_party = word_tokenize(text2Party)
fdistance = FreqDist(word_tokens_party).most_common(10)
mem = {x[0]: x[1] for x in fdistance}
vectorizer = TfidfVectorizer(max_features=15, stop_words='english')
tfidf_matrix = vectorizer.fit_transform(sent_tokenize(text2Party))
feature_names = vectorizer.get_feature_names_out()
tfidf_scores = {}
for i, word in enumerate(feature_names):
scores = [tfidf_matrix[j, i] for j in range(len(sent_tokenize(text2Party))) if i < tfidf_matrix[j].shape[1]]
if scores:
tfidf_scores[word] = sum(scores) / len(scores)
combined_scores = {}
for word in set(list(mem.keys()) + list(tfidf_scores.keys())):
freq_score = mem.get(word, 0) / max(mem.values()) if mem else 0
tfidf_score = tfidf_scores.get(word, 0) / max(tfidf_scores.values()) if tfidf_scores else 0
combined_scores[word] = (freq_score * 0.3) + (tfidf_score * 0.7)
top_words = dict(sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)[:10])
return normalize(top_words)
def normalize(d, target=1.0):
raw = sum(d.values())
factor = target / raw if raw != 0 else 0
return {key: value * factor for key, value in d.items()}
# --- Visualization Functions with Error Handling ---
def safe_plot(func, *args, **kwargs):
try:
plt.clf()
func(*args, **kwargs)
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
return Image.open(buf)
except Exception as e:
print(f"Plotting error: {e}")
return None
def fDistancePlot(text2Party):
return safe_plot(lambda: FreqDist(word_tokenize(text2Party)).plot(15, title='Frequency Distribution'))
def DispersionPlot(textParty):
try:
word_tokens_party = word_tokenize(textParty)
moby = Text(word_tokens_party) # Ensure Text is imported
fdistance = FreqDist(word_tokens_party)
word_Lst = [fdistance.most_common(6)[x][0] for x in range(5)]
plt.figure(figsize=(4, 3))
plt.title('Dispersion Plot')
moby.dispersion_plot(word_Lst)
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img = Image.open(buf)
plt.clf()
return img
except Exception as e:
print(f"Dispersion plot error: {e}")
return None
def word_cloud_generator(parsed_text_name, text_Party):
try:
parsed = parsed_text_name.lower()
if 'bjp' in parsed:
mask_path = 'bjpImg2.jpeg'
elif 'congress' in parsed:
mask_path = 'congress3.jpeg'
elif 'aap' in parsed:
mask_path = 'aapMain2.jpg'
else:
mask_path = None
if mask_path and os.path.exists(mask_path):
orgImg = Image.open(mask_path)
mask = np.array(orgImg)
wordcloud = WordCloud(max_words=3000, mask=mask).generate(text_Party)
plt.imshow(wordcloud)
else:
wordcloud = WordCloud(max_words=2000).generate(text_Party)
plt.imshow(wordcloud)
plt.axis("off")
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
return Image.open(buf)
except Exception as e:
print(f"Word cloud error: {e}")
return None
def get_all_phases_containing_tar_wrd(target_word, tar_passage, left_margin=10, right_margin=10, numLins=4):
"""
Function to get all the phrases that contain the target word in a text/passage.
"""
if not target_word or target_word.strip() == "":
return "Please enter a search term"
tokens = nltk.word_tokenize(tar_passage)
text = nltk.Text(tokens)
c = nltk.ConcordanceIndex(text.tokens, key=lambda s: s.lower())
offsets = c.offsets(target_word)
concordance_txt = [
text.tokens[max(0, offset - left_margin):offset + right_margin]
for offset in offsets[:numLins]
]
result = [' '.join(con_sub) for con_sub in concordance_txt]
return '\n'.join(result)
# --- Main Analysis Function ---
def analysis(Manifesto, Search):
try:
if Manifesto is None:
return "No file uploaded", {}, None, None, None, None, None, "No file uploaded"
if Search.strip() == "":
Search = "government"
raw_party = Parsing(Manifesto)
if isinstance(raw_party, str) and raw_party.startswith("Error"):
return raw_party, {}, None, None, None, None, None, "Parsing failed"
text_Party = clean_text(raw_party)
text_Party_processed = Preprocess(text_Party)
summary = generate_summary(raw_party)
df = pd.DataFrame([{'Content': text_Party_processed}], columns=['Content'])
df['Subjectivity'] = df['Content'].apply(lambda x: TextBlob(x).sentiment.subjectivity)
df['Polarity'] = df['Content'].apply(lambda x: TextBlob(x).sentiment.polarity)
df['Polarity_Label'] = df['Polarity'].apply(lambda x: 'Positive' if x > 0 else 'Negative' if x < 0 else 'Neutral')
df['Subjectivity_Label'] = df['Subjectivity'].apply(lambda x: 'High' if x > 0.5 else 'Low')
# Generate Plots with Safe Plotting
sentiment_plot = safe_plot(lambda: df['Polarity_Label'].value_counts().plot(kind='bar', color="#FF9F45", title='Sentiment Analysis'))
subjectivity_plot = safe_plot(lambda: df['Subjectivity_Label'].value_counts().plot(kind='bar', color="#B667F1", title='Subjectivity Analysis'))
freq_plot = fDistancePlot(text_Party_processed)
dispersion_plot = DispersionPlot(text_Party_processed)
wordcloud = word_cloud_generator(Manifesto.name, text_Party_processed)
fdist_Party = fDistance(text_Party_processed)
searChRes = get_all_phases_containing_tar_wrd(Search, text_Party_processed)
return searChRes, fdist_Party, sentiment_plot, subjectivity_plot, wordcloud, freq_plot, dispersion_plot, summary
except Exception as e:
error_msg = f"Critical error: {str(e)}"
print(error_msg)
traceback.print_exc()
return error_msg, {}, None, None, None, None, None, "Analysis failed"
# --- Gradio Interface ---
Search_txt = "text"
filePdf = "file"
with gr.Blocks(title='Manifesto Analysis') as demo:
gr.Markdown("# Manifesto Analysis with LLM Enhancement")
with gr.Row():
with gr.Column():
file_input = gr.File(label="Upload Manifesto PDF", file_types=[".pdf"])
search_input = gr.Textbox(label="Search Term", placeholder="Enter a term to search in the manifesto")
submit_btn = gr.Button("Analyze Manifesto")
with gr.Tabs():
with gr.TabItem("Summary"): gr.Textbox(label='AI-Generated Summary', lines=10)
with gr.TabItem("Search Results"): gr.Textbox(label='Context Based Search')
with gr.TabItem("Key Topics"): gr.Label(label="Most Relevant Topics (LLM Enhanced)")
with gr.TabItem("Visualizations"):
with gr.Row():
gr.Image(label='Sentiment Analysis'), gr.Image(label='Subjectivity Analysis')
with gr.Row():
gr.Image(label='Word Cloud'), gr.Image(label='Frequency Distribution')
gr.Image(label='Dispersion Plot')
submit_btn.click(
fn=analysis,
inputs=[file_input, search_input],
outputs=[
gr.Textbox(label='Context Based Search'),
gr.Label(label="Most Relevant Topics (LLM Enhanced)"),
gr.Image(label='Sentiment Analysis'),
gr.Image(label='Subjectivity Analysis'),
gr.Image(label='Word Cloud'),
gr.Image(label='Frequency Distribution'),
gr.Image(label='Dispersion Plot'),
gr.Textbox(label='AI-Generated Summary', lines=10)
]
)
gr.Examples(
examples=[
["Example/AAP_Manifesto_2019.pdf", "government"],
["Example/Bjp_Manifesto_2019.pdf", "environment"],
["Example/Congress_Manifesto_2019.pdf", "safety"]
],
inputs=[file_input, search_input]
)
demo.launch(debug=True, share=False, show_error=True) |