File size: 20,230 Bytes
2e83a41
 
a87bc00
 
1726132
a87bc00
 
 
 
 
 
 
 
 
 
 
cd8ad01
529eea1
a87bc00
 
22af537
 
a87bc00
7b11062
d887fe7
a87bc00
 
 
 
c27c36d
a87bc00
 
aa5087f
 
029ffc9
 
 
 
 
f18a30e
029ffc9
c58aa0b
 
8b674fc
8d7d358
a87bc00
 
 
d963f31
a87bc00
029ffc9
 
c58aa0b
029ffc9
 
 
 
 
 
 
 
 
a87bc00
 
 
5f546a1
 
 
b183374
5f546a1
2791a19
5f546a1
a87bc00
11b6240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a87bc00
 
 
 
 
 
 
 
 
 
c90d42e
a87bc00
 
c90d42e
 
a87bc00
 
 
 
 
 
 
c90d42e
a87bc00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1726132
 
 
e030268
1726132
b36e9af
a87bc00
 
 
 
 
 
 
5577484
a87bc00
 
 
 
fb1ce50
dd57fb3
 
 
 
 
 
 
 
fb1ce50
 
 
 
 
dd57fb3
 
fb1ce50
dd57fb3
 
 
 
 
 
 
 
 
 
 
4357809
1dadadf
 
dd57fb3
 
a87bc00
 
 
 
 
 
029ffc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a87bc00
 
029ffc9
a87bc00
029ffc9
a87bc00
 
 
 
 
029ffc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a87bc00
7fa8edb
a87bc00
5577484
a87bc00
 
 
5696ea4
7fa8edb
5696ea4
7a4b822
bc86dbe
 
 
 
f18a30e
bc86dbe
 
a87bc00
 
d7c764c
 
 
 
427074d
d7c764c
e9f9b30
d7c764c
 
f10fd87
d7c764c
 
0a637cc
d7c764c
ed4ccd5
 
d7c764c
 
 
 
 
 
 
 
a87bc00
6542f5d
5577484
 
 
 
 
 
6542f5d
 
5577484
 
 
a82e853
6542f5d
 
 
 
 
 
 
 
 
54ed831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5beb0e
 
afae3ae
54ed831
d5beb0e
 
54ed831
 
 
 
 
 
a32f1aa
54ed831
 
 
 
 
a32f1aa
d5beb0e
54ed831
 
 
 
 
 
 
a32f1aa
b8c6825
54ed831
d5beb0e
40c1a81
54ed831
 
 
9d29f03
 
b4aeabd
d5beb0e
97c2647
54ed831
 
 
 
 
 
 
 
 
 
9e60b4c
 
9788480
d5beb0e
c457784
54ed831
 
 
 
 
 
 
9e60b4c
54ed831
 
 
58893fc
 
9788480
d5beb0e
c457784
54ed831
 
 
 
75a8a58
54ed831
 
 
 
 
9788480
54ed831
 
 
 
 
 
 
 
 
 
 
 
76ec819
529eea1
67f8b07
529eea1
7a966d7
529eea1
 
 
6542f5d
529eea1
 
 
76ec819
1df8bb0
 
 
 
 
 
 
e0441b6
 
fb1ce50
 
e0441b6
fb1ce50
 
 
 
 
e0441b6
 
 
fb1ce50
1df8bb0
e0441b6
1df8bb0
fb1ce50
 
e0441b6
 
fb1ce50
e0441b6
 
1df8bb0
 
 
 
e0441b6
1df8bb0
 
 
e0441b6
1df8bb0
 
 
 
 
2791a19
1df8bb0
e0441b6
1df8bb0
 
 
 
 
 
 
 
 
 
 
 
 
e0441b6
1df8bb0
 
 
 
 
 
 
 
 
 
e0441b6
1df8bb0
 
 
e0441b6
1df8bb0
 
e0441b6
 
1df8bb0
 
 
e0441b6
1df8bb0
 
 
 
e0441b6
1df8bb0
 
 
 
 
e0441b6
 
1df8bb0
 
a87bc00
884d940
544d752
3130a75
28346aa
029ffc9
28346aa
 
 
 
 
029ffc9
6542f5d
de45d29
029ffc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91c47b
029ffc9
 
e0441b6
 
 
029ffc9
 
 
 
 
 
 
 
 
e0441b6
70b7c33
a87bc00
1df8bb0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
"""
# MANIFESTO ANALYSIS
"""

##IMPORTING LIBRARIES
import random
import matplotlib.pyplot as plt
import nltk
from nltk.tokenize import word_tokenize,sent_tokenize
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords 
from nltk.tokenize import word_tokenize
from nltk.probability import FreqDist
from cleantext import clean
import textract
import urllib.request
import nltk.corpus  
from nltk.text import Text
import io
from io import StringIO,BytesIO
import sys 
import pandas as pd
import cv2
import re
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
from textblob import TextBlob
from PIL import Image
import os
import gradio as gr
from zipfile import ZipFile
import contractions
import unidecode
import groq
import json
from dotenv import load_dotenv
from sklearn.feature_extraction.text import TfidfVectorizer
from collections import Counter
import numpy as np

# # Load environment variables from .env file
# load_dotenv()

nltk.download('punkt_tab')
nltk.download('stopwords')
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('words')

# Initialize Groq client for LLM capabilities
try:
    groq_api_key = GROQ_API_KEY
    if groq_api_key:
        groq_client = groq.Groq(api_key=groq_api_key)
    else:
        print("Warning: GROQ_API_KEY not found in environment variables. Summarization will be disabled.")
        groq_client = None
except Exception as e:
    print(f"Error initializing Groq client: {e}")
    groq_client = None


"""## PARSING FILES"""

#def Parsing(parsed_text):
  #parsed_text=parsed_text.name
  #raw_party =parser.from_file(parsed_text) 
 # raw_party = raw_party['content'],cache_examples=True
#  return clean(raw_party)
 
  
def Parsing(parsed_text):
  '''
  Process a PDF file and extract its text content
  parsed_text: Can be a file object with a 'name' attribute or a file path string
  '''
  try:
    # Handle different input types
    if hasattr(parsed_text, 'name'):
      file_path = parsed_text.name
    else:
      file_path = parsed_text
      
    # Extract text from PDF
    raw_party = textract.process(file_path, encoding='ascii', method='pdfminer')
    return clean(raw_party)
  except Exception as e:
    print(f"Error parsing PDF: {str(e)}")
    return f"Error parsing PDF: {str(e)}"


#Added more stopwords to avoid irrelevant terms
stop_words = set(stopwords.words('english'))
stop_words.update('ask','much','thank','etc.', 'e', 'We', 'In', 'ed','pa', 'This','also', 'A', 'fu','To','5','ing', 'er', '2')

"""## PREPROCESSING"""

def clean_text(text):
  '''
  The function which returns clean text
  '''
  text = text.encode("ascii", errors="ignore").decode("ascii")  # remove non-asciicharacters
  text=unidecode.unidecode(text)# diacritics remove
  text=contractions.fix(text) # contraction fix
  text = re.sub(r"\n", " ", text)
  text = re.sub(r"\n\n", " ", text)
  text = re.sub(r"\t", " ", text)
  text = re.sub(r"/ ", " ", text)
  text = text.strip(" ")
  text = re.sub(" +", " ", text).strip()  # get rid of multiple spaces and replace with a single
  
  text = [word for word in text.split() if word not in stop_words]
  text = ' '.join(text)
  return text

# text_Party=clean_text(raw_party)

def Preprocess(textParty):
  '''
  Removing special characters extra spaces
  '''
  text1Party = re.sub('[^A-Za-z0-9]+', ' ', textParty) 
  #Removing all stop words
  pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) + r')\b\s*')
  text2Party = pattern.sub('', text1Party)
  # fdist_cong = FreqDist(word_tokens_cong)
  return text2Party





'''
  Using Concordance, you can see each time a word is used, along with its 
  immediate context. It can give you a peek into how a word is being used
  at the sentence level and what words are used with it 
'''
def conc(text_Party,strng):
  word_tokens_party = word_tokenize(text_Party)
  moby = Text(word_tokens_party) 
  resultList = []
  for i in range(0,1):
      save_stdout = sys.stdout
      result = StringIO()
      sys.stdout = result
      moby.concordance(strng,lines=4,width=82)    
      sys.stdout = save_stdout      
  s=result.getvalue().splitlines()
  return result.getvalue()
  
def get_all_phases_containing_tar_wrd(target_word, tar_passage, left_margin = 10, right_margin = 10, numLins=4):
    """
        Function to get all the phases that contain the target word in a text/passage tar_passage.
        Workaround to save the output given by nltk Concordance function
         
        str target_word, str tar_passage int left_margin int right_margin --> list of str
        left_margin and right_margin allocate the number of words/pununciation before and after target word
        Left margin will take note of the beginning of the text
    """     
    # Handle empty or None search terms
    if not target_word or target_word.strip() == "":
        return "Please enter a search term"
        
    # Create list of tokens using nltk function
    tokens = nltk.word_tokenize(tar_passage)
     
    # Create the text of tokens
    text = nltk.Text(tokens)
 
    ## Collect all the index or offset position of the target word
    c = nltk.ConcordanceIndex(text.tokens, key = lambda s: s.lower())
 
    ## Collect the range of the words that is within the target word by using text.tokens[start;end].
    ## The map function is use so that when the offset position - the target range < 0, it will be default to zero
    concordance_txt = ([text.tokens[list(map(lambda x: x-5 if (x-left_margin)>0 else 0,[offset]))[0]:offset+right_margin] for offset in c.offsets(target_word)])
                         
    ## join the sentences for each of the target phrase and return it
    result = [''.join([x.replace("Y","")+' ' for x in con_sub]) for con_sub in concordance_txt][:-1]
    result=result[:numLins+1]
    
    res='\n\n'.join(result)
    return res  
  

def normalize(d, target=1.0):
   raw = sum(d.values())
   factor = target/raw
   return {key:value*factor for key,value in d.items()}


def generate_summary(text, max_length=1000):
    """
    Generate a summary of the manifesto text using Groq LLM
    """
    if not groq_client:
        return "Summarization is not available. Please set up your GROQ_API_KEY in the .env file."
    
    # Truncate text if it's too long to fit in context window
    if len(text) > 10000:
        text = text[:10000]
    
    try:
        # Use Groq's LLaMA 3 model for summarization
        completion = groq_client.chat.completions.create(
            model="llama3-8b-8192",  # Using LLaMA 3 8B model
            messages=[
                {"role": "system", "content": "You are a helpful assistant that summarizes political manifestos. Provide a concise, objective summary that captures the key policy proposals, themes, and promises in the manifesto."},
                {"role": "user", "content": f"Please summarize the following political manifesto text in about 300-500 words, focusing on the main policy areas, promises, and themes:\n\n{text}"}
            ],
            temperature=0.3,  # Lower temperature for more focused output
            max_tokens=800,   # Limit response length
        )
        
        return completion.choices[0].message.content
    except Exception as e:
        return f"Error generating summary: {str(e)}. Please check your API key and connection."

def fDistance(text2Party):
  '''
  Most frequent words search using TF-IDF to find more relevant words
  '''
  # Traditional frequency distribution
  word_tokens_party = word_tokenize(text2Party) #Tokenizing
  fdistance = FreqDist(word_tokens_party).most_common(10)
  mem={}
  for x in fdistance:
    mem[x[0]]=x[1]
    
  # Enhanced with TF-IDF for better relevance
  sentences = sent_tokenize(text2Party)
  
  # Use TF-IDF to find more relevant words
  vectorizer = TfidfVectorizer(max_features=15, stop_words='english')
  tfidf_matrix = vectorizer.fit_transform(sentences)
  
  # Get feature names (words)
  feature_names = vectorizer.get_feature_names_out()
  
  # Calculate average TF-IDF score for each word across all sentences
  tfidf_scores = {}
  for i, word in enumerate(feature_names):
      scores = [tfidf_matrix[j, i] for j in range(len(sentences)) if i < tfidf_matrix[j].shape[1]]
      if scores:
          tfidf_scores[word] = sum(scores) / len(scores)
  
  # Sort by score and get top words
  sorted_tfidf = dict(sorted(tfidf_scores.items(), key=lambda x: x[1], reverse=True)[:10])
  
  # Combine traditional frequency with TF-IDF for better results
  combined_scores = {}
  for word in set(list(mem.keys()) + list(sorted_tfidf.keys())):
      # Normalize and combine both scores (with more weight to TF-IDF)
      freq_score = mem.get(word, 0) / max(mem.values()) if mem else 0
      tfidf_score = sorted_tfidf.get(word, 0) / max(sorted_tfidf.values()) if sorted_tfidf else 0
      combined_scores[word] = (freq_score * 0.3) + (tfidf_score * 0.7)  # Weight TF-IDF higher
  
  # Get top 10 words by combined score
  top_words = dict(sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)[:10])
  
  return normalize(top_words)

def fDistancePlot(text2Party,plotN=15):
  '''
  Most Frequent Words Visualization
  '''
  word_tokens_party = word_tokenize(text2Party) #Tokenizing
  fdistance = FreqDist(word_tokens_party)
  plt.title('Frequency Distribution')
  plt.axis('off')
  plt.figure(figsize=(4,3))
  fdistance.plot(plotN)
  plt.tight_layout()
  buf = BytesIO()
  plt.savefig(buf)
  buf.seek(0)
  img1 = np.array(Image.open(buf))
  plt.clf() 
  return img1


def DispersionPlot(textParty):
  '''
  Dispersion PLot
  '''
  word_tokens_party = word_tokenize(textParty) #Tokenizing
  moby = Text(word_tokens_party) 
  fdistance = FreqDist(word_tokens_party)
  word_Lst=[]
  for x in range(5):
    word_Lst.append(fdistance.most_common(6)[x][0]) 
  
  plt.axis('off')
  plt.figure(figsize=(4,3))
  plt.title('Dispersion Plot')
  moby.dispersion_plot(word_Lst)
  plt.plot(color="#EF6D6D")
  plt.tight_layout()
  buf = BytesIO()
  plt.savefig(buf)
  buf.seek(0)
  img = Image.open(buf)
  plt.clf() 
  return img


def getSubjectivity(text):
  
  '''
  Create a function to get the polarity
  '''
  return TextBlob(text).sentiment.subjectivity


def getPolarity(text):
  '''
  Create a function to get the polarity
  '''
  return  TextBlob(text).sentiment.polarity
  
  
def getAnalysis(score):
  if score < 0:
    return 'Negative'
  elif score == 0:
    return 'Neutral'
  else:
    return 'Positive'
def Original_Image(path):
  img= cv2.imread(path)
  img= cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  
  return img

def Image_Processed(path):
  '''
  Reading the image file
  '''
  img= cv2.imread(path)
  img= cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
  
  #Thresholding
  ret, bw_img = cv2.threshold(img, 124, 255, cv2.THRESH_BINARY)

  return bw_img

def word_cloud(orgIm,mask_img,text_Party_pr,maxWord=2000,colorGener=True,
    contCol='white',bckColor='white'):
  '''
  #Generating word cloud
  '''  
  mask =mask_img
  # Create and generate a word cloud image:
  wordcloud = WordCloud(max_words=maxWord, background_color=bckColor,
                        mask=mask,
                        colormap='nipy_spectral_r',
                        contour_color=contCol,
                        width=800, height=800,
                        margin=2,
                        contour_width=3).generate(text_Party_pr)

  # create coloring from image

  
  plt.axis("off")
  if colorGener==True:
    image_colors = ImageColorGenerator(orgIm)
    plt.imshow(wordcloud.recolor(color_func= image_colors),interpolation="bilinear")
    
  
  else:    
    plt.imshow(wordcloud)
    
  
  
 
def word_cloud_generator(parsed_text_name,text_Party):
  parsed=parsed_text_name.lower()

  if 'bjp' in parsed:
    orgImg=Original_Image('bjpImg2.jpeg')
    bwImg=Image_Processed('bjpImg2.jpeg')
    plt.figure(figsize=(6,5))
    word_cloud(orgImg,bwImg,text_Party,maxWord=3000,colorGener=True,
    contCol='white', bckColor='black')
    plt.tight_layout()
    buf = BytesIO()
    plt.savefig(buf)
    buf.seek(0)
    img1 = Image.open(buf)
    plt.clf() 
    return img1

  
  elif 'congress' in parsed:
    orgImg=Original_Image('congress3.jpeg')
    bwImg=Image_Processed('congress3.jpeg')
    plt.figure(figsize=(5,4))
    word_cloud(orgImg,bwImg,text_Party,maxWord=3000,colorGener=True)
    
    plt.tight_layout()
    buf = BytesIO()
    plt.savefig(buf)
    buf.seek(0)
    img2 = Image.open(buf)
    plt.clf() 
    return img2
    #congrsMain.jpg
    
  
  elif 'aap' in parsed:
    orgImg=Original_Image('aapMain2.jpg')
    bwImg=Image_Processed('aapMain2.jpg')
    plt.figure(figsize=(5,4))
    word_cloud(orgImg,bwImg,text_Party,maxWord=3000,colorGener=False,contCol='black')
    
    plt.tight_layout()
    buf = BytesIO()
    plt.savefig(buf)
    buf.seek(0)
    img3 = Image.open(buf)
    plt.clf() 
    return img3
  
  else :
    wordcloud = WordCloud(max_words=2000, background_color="white",mode="RGB").generate(text_Party)
    plt.figure(figsize=(5,5))
    plt.imshow(wordcloud, interpolation="bilinear")
    plt.axis("off")   
    plt.tight_layout()
    buf = BytesIO()
    plt.savefig(buf)
    buf.seek(0)
    img4 = Image.open(buf)
    plt.clf()
    return img4



'''
url = "http://library.bjp.org/jspui/bitstream/123456789/2988/1/BJP-Election-english-2019.pdf"
path_input = "./Bjp_Manifesto_2019.pdf"
urllib.request.urlretrieve(url, filename=path_input)

url="https://drive.google.com/uc?id=1BLCiy_BWilfVdrUH8kbO-44DJevwO5CG&export=download"
path_input = "./Aap_Manifesto_2019.pdf"
urllib.request.urlretrieve(url, filename=path_input)

url="https://drive.google.com/uc?id=1HVZvTtYntl0YKLnE0cwu0CvAIRhXOv60&export=download"
path_input = "./Congress_Manifesto_2019.pdf"
urllib.request.urlretrieve(url, filename=path_input)
'''
def analysis(Manifesto, Search): 
  '''
  Main analysis function that processes the manifesto and generates all outputs
  Manifesto: PDF file uploaded by the user
  Search: Search term entered by the user
  '''
  try:
    print(f"Analysis function called with: Manifesto={Manifesto}, Search={Search}")
    
    # Check if a file was uploaded
    if Manifesto is None:
      print("No file uploaded")
      return "Please upload a PDF file", {}, None, None, None, None, None, "No file uploaded"
      
    # Handle empty search term
    if Search is None or Search.strip() == "":
      Search = "government"  # Default search term
      print(f"Using default search term: {Search}")
    else:
      print(f"Using provided search term: {Search}")
      
    # Process the uploaded PDF
    print(f"Processing file: {Manifesto.name if hasattr(Manifesto, 'name') else Manifesto}")
    raw_party = Parsing(Manifesto)
    
    # Check if parsing was successful
    if isinstance(raw_party, str) and raw_party.startswith("Error"):
      print(f"Parsing error: {raw_party}")
      return raw_party, {}, None, None, None, None, None, "Error generating summary due to parsing failure"
    
    print("Parsing successful, cleaning text...")
    text_Party = clean_text(raw_party)
    text_Party_processed = Preprocess(text_Party)

    # Generate summary using LLM
    print("Generating summary...")
    summary = generate_summary(raw_party)

    # Sentiment analysis
    print("Performing sentiment analysis...")
    df = pd.DataFrame(raw_party.split('\n'), columns=['Content'])
    df['Subjectivity'] = df['Content'].apply(getSubjectivity)
    df['Polarity'] = df['Content'].apply(getPolarity)
    df['Analysis on Polarity'] = df['Polarity'].apply(getAnalysis)
    df['Analysis on Subjectivity'] = df['Subjectivity'].apply(getAnalysis)
    
    # Generate sentiment analysis plot
    print("Generating sentiment analysis plot...")
    plt.title('Sentiment Analysis')
    plt.xlabel('Sentiment')
    plt.ylabel('Counts')
    plt.figure(figsize=(4,3))
    df['Analysis on Polarity'].value_counts().plot(kind ='bar',color="#FF9F45")
    plt.tight_layout()
    buf = BytesIO()
    plt.savefig(buf)
    buf.seek(0)
    img1 = Image.open(buf)
    plt.clf() 
    
    # Generate subjectivity analysis plot
    print("Generating subjectivity analysis plot...")
    plt.figure(figsize=(4,3))
    df['Analysis on Subjectivity'].value_counts().plot(kind ='bar',color="#B667F1")
    plt.tight_layout()
    buf = BytesIO()
    plt.savefig(buf)
    buf.seek(0)
    img2 = Image.open(buf)
    plt.clf()
      
    # Generate word cloud
    print("Generating word cloud...")
    img3 = word_cloud_generator(Manifesto.name, text_Party_processed)
    
    # Generate frequency distribution and dispersion plots
    print("Generating frequency distribution...")
    fdist_Party = fDistance(text_Party_processed)
    img4 = fDistancePlot(text_Party_processed)
    
    print("Generating dispersion plot...")
    img5 = DispersionPlot(text_Party_processed)
    
    # Search for the term in the text
    print(f"Searching for term: {Search}")
    searChRes = get_all_phases_containing_tar_wrd(Search, text_Party_processed)
    searChRes = searChRes.replace(Search, "\u0332".join(Search))
    
    plt.close('all') 
    print("Analysis completed successfully")
    return searChRes, fdist_Party, img1, img2, img3, img4, img5, summary
    
  except Exception as e:
    error_message = f"Error analyzing manifesto: {str(e)}"
    print(error_message)
    import traceback
    traceback.print_exc()
    # Return placeholder values in case of error
    return error_message, {}, None, None, None, None, None, "Error generating summary. Please check the console for details."


Search_txt= "text"
filePdf = "file"
text = gr.Textbox(label='Context Based Search')
mfw=gr.Label(label="Most Relevant Topics (LLM Enhanced)")
plot1=gr.Image(label='Sentiment Analysis')
plot2=gr.Image(label='Subjectivity Analysis')
plot3=gr.Image(label='Word Cloud')
plot4=gr.Image(label='Frequency Distribution')
plot5=gr.Image(label='Dispersion Plot')
summary_output = gr.Textbox(label='AI-Generated Summary', lines=10)

with gr.Blocks(title='Manifesto Analysis') as demo:
    gr.Markdown("# Manifesto Analysis with LLM Enhancement")
    gr.Markdown("### Analyze political manifestos with advanced NLP and LLM techniques")
    
    with gr.Row():
        with gr.Column(scale=1):
            file_input = gr.File(label="Upload Manifesto PDF", file_types=[".pdf"])
            search_input = gr.Textbox(label="Search Term", placeholder="Enter a term to search in the manifesto")
            submit_btn = gr.Button("Analyze Manifesto")
    
    with gr.Tabs():
        with gr.TabItem("Summary"):
            summary_output
        
        with gr.TabItem("Search Results"):
            text
        
        with gr.TabItem("Key Topics"):
            mfw
        
        with gr.TabItem("Visualizations"):
            with gr.Row():
                with gr.Column(scale=1):
                    plot3
                with gr.Column(scale=1):
                    plot4
            
            with gr.Row():
                with gr.Column(scale=1):
                    plot1
                with gr.Column(scale=1):
                    plot2
            
            with gr.Row():
                plot5
    
    submit_btn.click(
        fn=analysis,
        inputs=[file_input, search_input],
        outputs=[text, mfw, plot1, plot2, plot3, plot4, plot5, summary_output]
    )
    
    # Add a debug print to verify the button is connected
    print("Button connected to analysis function")
    
    gr.Examples(
        examples=[
            ['Example/AAP_Manifesto_2019.pdf', 'government'],
            ['Example/Bjp_Manifesto_2019.pdf', 'environment'],
            ['Example/Congress_Manifesto_2019.pdf', 'safety']
        ],
        inputs=[file_input, search_input]
    )

demo.launch(debug=True, share=False, show_error=True)


# Old interface code replaced by the Blocks implementation above
# io=gr.Interface(fn=analysis, inputs=[filePdf,Search_txt], outputs=[text,mfw,plot1,plot2,plot3,plot4,plot5], title='Manifesto Analysis',examples=[['Example/AAP_Manifesto_2019.pdf','government'],['Example/Bjp_Manifesto_2019.pdf','environment'],['Example/Congress_Manifesto_2019.pdf','safety']])
# io.launch(debug=True,share=False)