Spaces:
Running
Running
File size: 29,813 Bytes
029ffc9 2e83a41 a87bc00 1726132 a87bc00 cd8ad01 529eea1 a87bc00 22af537 a87bc00 7b11062 d887fe7 a87bc00 c27c36d a87bc00 aa5087f 029ffc9 8b674fc 8d7d358 a87bc00 d963f31 a87bc00 029ffc9 a87bc00 5f546a1 b183374 5f546a1 2791a19 5f546a1 a87bc00 5f546a1 a87bc00 c90d42e a87bc00 c90d42e a87bc00 c90d42e a87bc00 1726132 e030268 1726132 b36e9af a87bc00 5577484 a87bc00 1dadadf dd57fb3 4357809 1dadadf dd57fb3 a87bc00 029ffc9 a87bc00 029ffc9 a87bc00 029ffc9 a87bc00 029ffc9 a87bc00 7fa8edb a87bc00 5577484 a87bc00 5696ea4 7fa8edb 5696ea4 7a4b822 bc86dbe a87bc00 d7c764c 427074d d7c764c e9f9b30 d7c764c f10fd87 d7c764c 0a637cc d7c764c ed4ccd5 d7c764c a87bc00 6542f5d 5577484 6542f5d 5577484 a82e853 6542f5d 54ed831 d5beb0e afae3ae 54ed831 d5beb0e 54ed831 a32f1aa 54ed831 a32f1aa d5beb0e 54ed831 a32f1aa b8c6825 54ed831 d5beb0e 40c1a81 54ed831 9d29f03 b4aeabd d5beb0e 97c2647 54ed831 9e60b4c 9788480 d5beb0e c457784 54ed831 9e60b4c 54ed831 58893fc 9788480 d5beb0e c457784 54ed831 75a8a58 54ed831 9788480 54ed831 76ec819 529eea1 67f8b07 529eea1 7a966d7 529eea1 6542f5d 529eea1 76ec819 54c4c01 a87bc00 029ffc9 6542f5d bc86dbe 7a4b822 41f896c 22af537 41f896c 6542f5d bc86dbe 7a4b822 41f896c d332967 41f896c 2791a19 029ffc9 6542f5d 029ffc9 8a44135 2791a19 029ffc9 a87bc00 884d940 544d752 3130a75 28346aa 029ffc9 28346aa 029ffc9 6542f5d de45d29 029ffc9 70b7c33 a87bc00 d5beb0e 9159590 5a2e6b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 |
# """
# # MANIFESTO ANALYSIS
# """
# ##IMPORTING LIBRARIES
# import random
# import matplotlib.pyplot as plt
# import nltk
# from nltk.tokenize import word_tokenize,sent_tokenize
# from nltk.corpus import stopwords
# from nltk.stem.porter import PorterStemmer
# from nltk.stem import WordNetLemmatizer
# from nltk.corpus import stopwords
# from nltk.tokenize import word_tokenize
# from nltk.probability import FreqDist
# from cleantext import clean
# import textract
# import urllib.request
# import nltk.corpus
# from nltk.text import Text
# import io
# from io import StringIO,BytesIO
# import sys
# import pandas as pd
# import cv2
# import re
# from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
# from textblob import TextBlob
# from PIL import Image
# import os
# import gradio as gr
# from zipfile import ZipFile
# import contractions
# import unidecode
# nltk.download('punkt_tab')
# nltk.download('stopwords')
# nltk.download('punkt')
# nltk.download('wordnet')
# nltk.download('words')
# """## PARSING FILES"""
# #def Parsing(parsed_text):
# #parsed_text=parsed_text.name
# #raw_party =parser.from_file(parsed_text)
# # raw_party = raw_party['content'],cache_examples=True
# # return clean(raw_party)
# def Parsing(parsed_text):
# parsed_text=parsed_text.name
# raw_party =textract.process(parsed_text, encoding='ascii',method='pdfminer')
# return clean(raw_party)
# #Added more stopwords to avoid irrelevant terms
# stop_words = set(stopwords.words('english'))
# stop_words.update('ask','much','thank','etc.', 'e', 'We', 'In', 'ed','pa', 'This','also', 'A', 'fu','To','5','ing', 'er', '2')
# """## PREPROCESSING"""
# def clean_text(text):
# '''
# The function which returns clean text
# '''
# text = text.encode("ascii", errors="ignore").decode("ascii") # remove non-asciicharacters
# text=unidecode.unidecode(text)# diacritics remove
# text=contractions.fix(text) # contraction fix
# text = re.sub(r"\n", " ", text)
# text = re.sub(r"\n\n", " ", text)
# text = re.sub(r"\t", " ", text)
# text = re.sub(r"/ ", " ", text)
# text = text.strip(" ")
# text = re.sub(" +", " ", text).strip() # get rid of multiple spaces and replace with a single
# text = [word for word in text.split() if word not in stop_words]
# text = ' '.join(text)
# return text
# # text_Party=clean_text(raw_party)
# def Preprocess(textParty):
# '''
# Removing special characters extra spaces
# '''
# text1Party = re.sub('[^A-Za-z0-9]+', ' ', textParty)
# #Removing all stop words
# pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) + r')\b\s*')
# text2Party = pattern.sub('', text1Party)
# # fdist_cong = FreqDist(word_tokens_cong)
# return text2Party
# '''
# Using Concordance, you can see each time a word is used, along with its
# immediate context. It can give you a peek into how a word is being used
# at the sentence level and what words are used with it
# '''
# def conc(text_Party,strng):
# word_tokens_party = word_tokenize(text_Party)
# moby = Text(word_tokens_party)
# resultList = []
# for i in range(0,1):
# save_stdout = sys.stdout
# result = StringIO()
# sys.stdout = result
# moby.concordance(strng,lines=4,width=82)
# sys.stdout = save_stdout
# s=result.getvalue().splitlines()
# return result.getvalue()
# def get_all_phases_containing_tar_wrd(target_word, tar_passage, left_margin = 10, right_margin = 10,numLins=4):
# """
# Function to get all the phases that contain the target word in a text/passage tar_passage.
# Workaround to save the output given by nltk Concordance function
# str target_word, str tar_passage int left_margin int right_margin --> list of str
# left_margin and right_margin allocate the number of words/pununciation before and after target word
# Left margin will take note of the beginning of the text
# """
# ## Create list of tokens using nltk function
# tokens = nltk.word_tokenize(tar_passage)
# ## Create the text of tokens
# text = nltk.Text(tokens)
# ## Collect all the index or offset position of the target word
# c = nltk.ConcordanceIndex(text.tokens, key = lambda s: s.lower())
# ## Collect the range of the words that is within the target word by using text.tokens[start;end].
# ## The map function is use so that when the offset position - the target range < 0, it will be default to zero
# concordance_txt = ([text.tokens[list(map(lambda x: x-5 if (x-left_margin)>0 else 0,[offset]))[0]:offset+right_margin] for offset in c.offsets(target_word)])
# ## join the sentences for each of the target phrase and return it
# result = [''.join([x.replace("Y","")+' ' for x in con_sub]) for con_sub in concordance_txt][:-1]
# result=result[:numLins+1]
# res='\n\n'.join(result)
# return res
# def normalize(d, target=1.0):
# raw = sum(d.values())
# factor = target/raw
# return {key:value*factor for key,value in d.items()}
# def fDistance(text2Party):
# '''
# Most frequent words search
# '''
# word_tokens_party = word_tokenize(text2Party) #Tokenizing
# fdistance = FreqDist(word_tokens_party).most_common(10)
# mem={}
# for x in fdistance:
# mem[x[0]]=x[1]
# return normalize(mem)
# def fDistancePlot(text2Party,plotN=15):
# '''
# Most Frequent Words Visualization
# '''
# word_tokens_party = word_tokenize(text2Party) #Tokenizing
# fdistance = FreqDist(word_tokens_party)
# plt.title('Frequency Distribution')
# plt.axis('off')
# plt.figure(figsize=(4,3))
# fdistance.plot(plotN)
# plt.tight_layout()
# buf = BytesIO()
# plt.savefig(buf)
# buf.seek(0)
# img1 = Image.open(buf)
# plt.clf()
# return img1
# def DispersionPlot(textParty):
# '''
# Dispersion PLot
# '''
# word_tokens_party = word_tokenize(textParty) #Tokenizing
# moby = Text(word_tokens_party)
# fdistance = FreqDist(word_tokens_party)
# word_Lst=[]
# for x in range(5):
# word_Lst.append(fdistance.most_common(6)[x][0])
# plt.axis('off')
# plt.figure(figsize=(4,3))
# plt.title('Dispersion Plot')
# moby.dispersion_plot(word_Lst)
# plt.plot(color="#EF6D6D")
# plt.tight_layout()
# buf = BytesIO()
# plt.savefig(buf)
# buf.seek(0)
# img = Image.open(buf)
# plt.clf()
# return img
# def getSubjectivity(text):
# '''
# Create a function to get the polarity
# '''
# return TextBlob(text).sentiment.subjectivity
# def getPolarity(text):
# '''
# Create a function to get the polarity
# '''
# return TextBlob(text).sentiment.polarity
# def getAnalysis(score):
# if score < 0:
# return 'Negative'
# elif score == 0:
# return 'Neutral'
# else:
# return 'Positive'
# def Original_Image(path):
# img= cv2.imread(path)
# img= cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# return img
# def Image_Processed(path):
# '''
# Reading the image file
# '''
# img= cv2.imread(path)
# img= cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# #Thresholding
# ret, bw_img = cv2.threshold(img, 124, 255, cv2.THRESH_BINARY)
# return bw_img
# def word_cloud(orgIm,mask_img,text_Party_pr,maxWord=2000,colorGener=True,
# contCol='white',bckColor='white'):
# '''
# #Generating word cloud
# '''
# mask =mask_img
# # Create and generate a word cloud image:
# wordcloud = WordCloud(max_words=maxWord, background_color=bckColor,
# mask=mask,
# colormap='nipy_spectral_r',
# contour_color=contCol,
# width=800, height=800,
# margin=2,
# contour_width=3).generate(text_Party_pr)
# # create coloring from image
# plt.axis("off")
# if colorGener==True:
# image_colors = ImageColorGenerator(orgIm)
# plt.imshow(wordcloud.recolor(color_func= image_colors),interpolation="bilinear")
# else:
# plt.imshow(wordcloud)
# def word_cloud_generator(parsed_text_name,text_Party):
# parsed=parsed_text_name.lower()
# if 'bjp' in parsed:
# orgImg=Original_Image('bjpImg2.jpeg')
# bwImg=Image_Processed('bjpImg2.jpeg')
# plt.figure(figsize=(6,5))
# word_cloud(orgImg,bwImg,text_Party,maxWord=3000,colorGener=True,
# contCol='white', bckColor='black')
# plt.tight_layout()
# buf = BytesIO()
# plt.savefig(buf)
# buf.seek(0)
# img1 = Image.open(buf)
# plt.clf()
# return img1
# elif 'congress' in parsed:
# orgImg=Original_Image('congress3.jpeg')
# bwImg=Image_Processed('congress3.jpeg')
# plt.figure(figsize=(5,4))
# word_cloud(orgImg,bwImg,text_Party,maxWord=3000,colorGener=True)
# plt.tight_layout()
# buf = BytesIO()
# plt.savefig(buf)
# buf.seek(0)
# img2 = Image.open(buf)
# plt.clf()
# return img2
# #congrsMain.jpg
# elif 'aap' in parsed:
# orgImg=Original_Image('aapMain2.jpg')
# bwImg=Image_Processed('aapMain2.jpg')
# plt.figure(figsize=(5,4))
# word_cloud(orgImg,bwImg,text_Party,maxWord=3000,colorGener=False,contCol='black')
# plt.tight_layout()
# buf = BytesIO()
# plt.savefig(buf)
# buf.seek(0)
# img3 = Image.open(buf)
# plt.clf()
# return img3
# else :
# wordcloud = WordCloud(max_words=2000, background_color="white",mode="RGB").generate(text_Party)
# plt.figure(figsize=(5,5))
# plt.imshow(wordcloud, interpolation="bilinear")
# plt.axis("off")
# plt.tight_layout()
# buf = BytesIO()
# plt.savefig(buf)
# buf.seek(0)
# img4 = Image.open(buf)
# plt.clf()
# return img4
# '''
# url = "http://library.bjp.org/jspui/bitstream/123456789/2988/1/BJP-Election-english-2019.pdf"
# path_input = "./Bjp_Manifesto_2019.pdf"
# urllib.request.urlretrieve(url, filename=path_input)
# url="https://drive.google.com/uc?id=1BLCiy_BWilfVdrUH8kbO-44DJevwO5CG&export=download"
# path_input = "./Aap_Manifesto_2019.pdf"
# urllib.request.urlretrieve(url, filename=path_input)
# url="https://drive.google.com/uc?id=1HVZvTtYntl0YKLnE0cwu0CvAIRhXOv60&export=download"
# path_input = "./Congress_Manifesto_2019.pdf"
# urllib.request.urlretrieve(url, filename=path_input)
# '''
# def analysis(Manifesto,Search):
# raw_party = Parsing(Manifesto)
# text_Party=clean_text(raw_party)
# text_Party= Preprocess(text_Party)
# df = pd.DataFrame(raw_party.split('\n'), columns=['Content'])
# df['Subjectivity'] = df['Content'].apply(getSubjectivity)
# df['Polarity'] = df['Content'].apply(getPolarity)
# df['Analysis on Polarity'] = df['Polarity'].apply(getAnalysis)
# df['Analysis on Subjectivity'] = df['Subjectivity'].apply(getAnalysis)
# plt.title('Sentiment Analysis')
# plt.xlabel('Sentiment')
# plt.ylabel('Counts')
# plt.figure(figsize=(4,3))
# df['Analysis on Polarity'].value_counts().plot(kind ='bar',color="#FF9F45")
# plt.tight_layout()
# buf = BytesIO()
# plt.savefig(buf)
# buf.seek(0)
# img1 = Image.open(buf)
# plt.clf()
# plt.figure(figsize=(4,3))
# df['Analysis on Subjectivity'].value_counts().plot(kind ='bar',color="#B667F1")
# plt.tight_layout()
# buf = BytesIO()
# plt.savefig(buf)
# buf.seek(0)
# img2 = Image.open(buf)
# plt.clf()
# img3 = word_cloud_generator(Manifesto.name,text_Party)
# fdist_Party=fDistance(text_Party)
# img4=fDistancePlot(text_Party)
# img5=DispersionPlot(text_Party)
# #concordance(text_Party,Search)
# searChRes=get_all_phases_containing_tar_wrd(Search,text_Party)
# searChRes=searChRes.replace(Search,"\u0332".join(Search))
# plt.close('all')
# return searChRes,fdist_Party,img1,img2,img3,img4,img5
# Search_txt= "text"
# filePdf = "file"
# text = gr.Textbox(label='Context Based Search')
# mfw=gr.Label(label="Most Relevant Topics")
# plot1=gr.Image(label='Sentiment Analysis')
# plot2=gr.Image(label='Subjectivity Analysis')
# plot3=gr.Image(label='Word Cloud')
# plot4=gr.Image(label='Frequency Distribution')
# plot5=gr.Image(label='Dispersion Plot')
# io=gr.Interface(fn=analysis, inputs=[filePdf,Search_txt], outputs=[text,mfw,plot1,plot2,plot3,plot4,plot5], title='Manifesto Analysis',examples=[['Example/AAP_Manifesto_2019.pdf','government'],['Example/Bjp_Manifesto_2019.pdf','environment'],['Example/Congress_Manifesto_2019.pdf','safety']],theme='peach')
# io.launch(debug=True,share=False)
# #allow_screenshot=False,allow_flagging="never",
# #examples=[['manifestos/Bjp_Manifesto_2019.pdf','modi'],['AAP_Manifesto_2019.pdf','delhi'],['manifestos/Congress_Manifesto_2019.pdf','safety']])
"""
# MANIFESTO ANALYSIS
"""
##IMPORTING LIBRARIES
import random
import matplotlib.pyplot as plt
import nltk
from nltk.tokenize import word_tokenize,sent_tokenize
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.probability import FreqDist
from cleantext import clean
import textract
import urllib.request
import nltk.corpus
from nltk.text import Text
import io
from io import StringIO,BytesIO
import sys
import pandas as pd
import cv2
import re
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
from textblob import TextBlob
from PIL import Image
import os
import gradio as gr
from zipfile import ZipFile
import contractions
import unidecode
import groq
import json
from dotenv import load_dotenv
from sklearn.feature_extraction.text import TfidfVectorizer
from collections import Counter
# Load environment variables from .env file
load_dotenv()
nltk.download('punkt_tab')
nltk.download('stopwords')
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('words')
# Initialize Groq client for LLM capabilities
try:
groq_api_key = os.getenv("GROQ_API_KEY")
if groq_api_key:
groq_client = groq.Groq(api_key=groq_api_key)
else:
print("Warning: GROQ_API_KEY not found in environment variables. Summarization will be disabled.")
groq_client = None
except Exception as e:
print(f"Error initializing Groq client: {e}")
groq_client = None
"""## PARSING FILES"""
#def Parsing(parsed_text):
#parsed_text=parsed_text.name
#raw_party =parser.from_file(parsed_text)
# raw_party = raw_party['content'],cache_examples=True
# return clean(raw_party)
def Parsing(parsed_text):
parsed_text=parsed_text.name
raw_party =textract.process(parsed_text, encoding='ascii',method='pdfminer')
return clean(raw_party)
#Added more stopwords to avoid irrelevant terms
stop_words = set(stopwords.words('english'))
stop_words.update('ask','much','thank','etc.', 'e', 'We', 'In', 'ed','pa', 'This','also', 'A', 'fu','To','5','ing', 'er', '2')
"""## PREPROCESSING"""
def clean_text(text):
'''
The function which returns clean text
'''
text = text.encode("ascii", errors="ignore").decode("ascii") # remove non-asciicharacters
text=unidecode.unidecode(text)# diacritics remove
text=contractions.fix(text) # contraction fix
text = re.sub(r"\n", " ", text)
text = re.sub(r"\n\n", " ", text)
text = re.sub(r"\t", " ", text)
text = re.sub(r"/ ", " ", text)
text = text.strip(" ")
text = re.sub(" +", " ", text).strip() # get rid of multiple spaces and replace with a single
text = [word for word in text.split() if word not in stop_words]
text = ' '.join(text)
return text
# text_Party=clean_text(raw_party)
def Preprocess(textParty):
'''
Removing special characters extra spaces
'''
text1Party = re.sub('[^A-Za-z0-9]+', ' ', textParty)
#Removing all stop words
pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) + r')\b\s*')
text2Party = pattern.sub('', text1Party)
# fdist_cong = FreqDist(word_tokens_cong)
return text2Party
'''
Using Concordance, you can see each time a word is used, along with its
immediate context. It can give you a peek into how a word is being used
at the sentence level and what words are used with it
'''
def conc(text_Party,strng):
word_tokens_party = word_tokenize(text_Party)
moby = Text(word_tokens_party)
resultList = []
for i in range(0,1):
save_stdout = sys.stdout
result = StringIO()
sys.stdout = result
moby.concordance(strng,lines=4,width=82)
sys.stdout = save_stdout
s=result.getvalue().splitlines()
return result.getvalue()
def get_all_phases_containing_tar_wrd(target_word, tar_passage, left_margin = 10, right_margin = 10,numLins=4):
"""
Function to get all the phases that contain the target word in a text/passage tar_passage.
Workaround to save the output given by nltk Concordance function
str target_word, str tar_passage int left_margin int right_margin --> list of str
left_margin and right_margin allocate the number of words/pununciation before and after target word
Left margin will take note of the beginning of the text
"""
## Create list of tokens using nltk function
tokens = nltk.word_tokenize(tar_passage)
## Create the text of tokens
text = nltk.Text(tokens)
## Collect all the index or offset position of the target word
c = nltk.ConcordanceIndex(text.tokens, key = lambda s: s.lower())
## Collect the range of the words that is within the target word by using text.tokens[start;end].
## The map function is use so that when the offset position - the target range < 0, it will be default to zero
concordance_txt = ([text.tokens[list(map(lambda x: x-5 if (x-left_margin)>0 else 0,[offset]))[0]:offset+right_margin] for offset in c.offsets(target_word)])
## join the sentences for each of the target phrase and return it
result = [''.join([x.replace("Y","")+' ' for x in con_sub]) for con_sub in concordance_txt][:-1]
result=result[:numLins+1]
res='\n\n'.join(result)
return res
def normalize(d, target=1.0):
raw = sum(d.values())
factor = target/raw
return {key:value*factor for key,value in d.items()}
def generate_summary(text, max_length=1000):
"""
Generate a summary of the manifesto text using Groq LLM
"""
if not groq_client:
return "Summarization is not available. Please set up your GROQ_API_KEY in the .env file."
# Truncate text if it's too long to fit in context window
if len(text) > 10000:
text = text[:10000]
try:
# Use Groq's LLaMA 3 model for summarization
completion = groq_client.chat.completions.create(
model="llama3-8b-8192", # Using LLaMA 3 8B model
messages=[
{"role": "system", "content": "You are a helpful assistant that summarizes political manifestos. Provide a concise, objective summary that captures the key policy proposals, themes, and promises in the manifesto."},
{"role": "user", "content": f"Please summarize the following political manifesto text in about 300-500 words, focusing on the main policy areas, promises, and themes:\n\n{text}"}
],
temperature=0.3, # Lower temperature for more focused output
max_tokens=800, # Limit response length
)
return completion.choices[0].message.content
except Exception as e:
return f"Error generating summary: {str(e)}. Please check your API key and connection."
def fDistance(text2Party):
'''
Most frequent words search using TF-IDF to find more relevant words
'''
# Traditional frequency distribution
word_tokens_party = word_tokenize(text2Party) #Tokenizing
fdistance = FreqDist(word_tokens_party).most_common(10)
mem={}
for x in fdistance:
mem[x[0]]=x[1]
# Enhanced with TF-IDF for better relevance
sentences = sent_tokenize(text2Party)
# Use TF-IDF to find more relevant words
vectorizer = TfidfVectorizer(max_features=15, stop_words='english')
tfidf_matrix = vectorizer.fit_transform(sentences)
# Get feature names (words)
feature_names = vectorizer.get_feature_names_out()
# Calculate average TF-IDF score for each word across all sentences
tfidf_scores = {}
for i, word in enumerate(feature_names):
scores = [tfidf_matrix[j, i] for j in range(len(sentences)) if i < tfidf_matrix[j].shape[1]]
if scores:
tfidf_scores[word] = sum(scores) / len(scores)
# Sort by score and get top words
sorted_tfidf = dict(sorted(tfidf_scores.items(), key=lambda x: x[1], reverse=True)[:10])
# Combine traditional frequency with TF-IDF for better results
combined_scores = {}
for word in set(list(mem.keys()) + list(sorted_tfidf.keys())):
# Normalize and combine both scores (with more weight to TF-IDF)
freq_score = mem.get(word, 0) / max(mem.values()) if mem else 0
tfidf_score = sorted_tfidf.get(word, 0) / max(sorted_tfidf.values()) if sorted_tfidf else 0
combined_scores[word] = (freq_score * 0.3) + (tfidf_score * 0.7) # Weight TF-IDF higher
# Get top 10 words by combined score
top_words = dict(sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)[:10])
return normalize(top_words)
def fDistancePlot(text2Party,plotN=15):
'''
Most Frequent Words Visualization
'''
word_tokens_party = word_tokenize(text2Party) #Tokenizing
fdistance = FreqDist(word_tokens_party)
plt.title('Frequency Distribution')
plt.axis('off')
plt.figure(figsize=(4,3))
fdistance.plot(plotN)
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf)
buf.seek(0)
img1 = Image.open(buf)
plt.clf()
return img1
def DispersionPlot(textParty):
'''
Dispersion PLot
'''
word_tokens_party = word_tokenize(textParty) #Tokenizing
moby = Text(word_tokens_party)
fdistance = FreqDist(word_tokens_party)
word_Lst=[]
for x in range(5):
word_Lst.append(fdistance.most_common(6)[x][0])
plt.axis('off')
plt.figure(figsize=(4,3))
plt.title('Dispersion Plot')
moby.dispersion_plot(word_Lst)
plt.plot(color="#EF6D6D")
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf)
buf.seek(0)
img = Image.open(buf)
plt.clf()
return img
def getSubjectivity(text):
'''
Create a function to get the polarity
'''
return TextBlob(text).sentiment.subjectivity
def getPolarity(text):
'''
Create a function to get the polarity
'''
return TextBlob(text).sentiment.polarity
def getAnalysis(score):
if score < 0:
return 'Negative'
elif score == 0:
return 'Neutral'
else:
return 'Positive'
def Original_Image(path):
img= cv2.imread(path)
img= cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def Image_Processed(path):
'''
Reading the image file
'''
img= cv2.imread(path)
img= cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#Thresholding
ret, bw_img = cv2.threshold(img, 124, 255, cv2.THRESH_BINARY)
return bw_img
def word_cloud(orgIm,mask_img,text_Party_pr,maxWord=2000,colorGener=True,
contCol='white',bckColor='white'):
'''
#Generating word cloud
'''
mask =mask_img
# Create and generate a word cloud image:
wordcloud = WordCloud(max_words=maxWord, background_color=bckColor,
mask=mask,
colormap='nipy_spectral_r',
contour_color=contCol,
width=800, height=800,
margin=2,
contour_width=3).generate(text_Party_pr)
# create coloring from image
plt.axis("off")
if colorGener==True:
image_colors = ImageColorGenerator(orgIm)
plt.imshow(wordcloud.recolor(color_func= image_colors),interpolation="bilinear")
else:
plt.imshow(wordcloud)
def word_cloud_generator(parsed_text_name,text_Party):
parsed=parsed_text_name.lower()
if 'bjp' in parsed:
orgImg=Original_Image('bjpImg2.jpeg')
bwImg=Image_Processed('bjpImg2.jpeg')
plt.figure(figsize=(6,5))
word_cloud(orgImg,bwImg,text_Party,maxWord=3000,colorGener=True,
contCol='white', bckColor='black')
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf)
buf.seek(0)
img1 = Image.open(buf)
plt.clf()
return img1
elif 'congress' in parsed:
orgImg=Original_Image('congress3.jpeg')
bwImg=Image_Processed('congress3.jpeg')
plt.figure(figsize=(5,4))
word_cloud(orgImg,bwImg,text_Party,maxWord=3000,colorGener=True)
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf)
buf.seek(0)
img2 = Image.open(buf)
plt.clf()
return img2
#congrsMain.jpg
elif 'aap' in parsed:
orgImg=Original_Image('aapMain2.jpg')
bwImg=Image_Processed('aapMain2.jpg')
plt.figure(figsize=(5,4))
word_cloud(orgImg,bwImg,text_Party,maxWord=3000,colorGener=False,contCol='black')
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf)
buf.seek(0)
img3 = Image.open(buf)
plt.clf()
return img3
else :
wordcloud = WordCloud(max_words=2000, background_color="white",mode="RGB").generate(text_Party)
plt.figure(figsize=(5,5))
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf)
buf.seek(0)
img4 = Image.open(buf)
plt.clf()
return img4
'''
url = "http://library.bjp.org/jspui/bitstream/123456789/2988/1/BJP-Election-english-2019.pdf"
path_input = "./Bjp_Manifesto_2019.pdf"
urllib.request.urlretrieve(url, filename=path_input)
url="https://drive.google.com/uc?id=1BLCiy_BWilfVdrUH8kbO-44DJevwO5CG&export=download"
path_input = "./Aap_Manifesto_2019.pdf"
urllib.request.urlretrieve(url, filename=path_input)
url="https://drive.google.com/uc?id=1HVZvTtYntl0YKLnE0cwu0CvAIRhXOv60&export=download"
path_input = "./Congress_Manifesto_2019.pdf"
urllib.request.urlretrieve(url, filename=path_input)
'''
def analysis(Manifesto,Search):
raw_party = Parsing(Manifesto)
text_Party=clean_text(raw_party)
text_Party_processed = Preprocess(text_Party)
# Generate summary using LLM
summary = generate_summary(raw_party)
df = pd.DataFrame(raw_party.split('\n'), columns=['Content'])
df['Subjectivity'] = df['Content'].apply(getSubjectivity)
df['Polarity'] = df['Content'].apply(getPolarity)
df['Analysis on Polarity'] = df['Polarity'].apply(getAnalysis)
df['Analysis on Subjectivity'] = df['Subjectivity'].apply(getAnalysis)
plt.title('Sentiment Analysis')
plt.xlabel('Sentiment')
plt.ylabel('Counts')
plt.figure(figsize=(4,3))
df['Analysis on Polarity'].value_counts().plot(kind ='bar',color="#FF9F45")
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf)
buf.seek(0)
img1 = Image.open(buf)
plt.clf()
plt.figure(figsize=(4,3))
df['Analysis on Subjectivity'].value_counts().plot(kind ='bar',color="#B667F1")
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf)
buf.seek(0)
img2 = Image.open(buf)
plt.clf()
img3 = word_cloud_generator(Manifesto.name,text_Party_processed)
fdist_Party=fDistance(text_Party_processed)
img4=fDistancePlot(text_Party_processed)
img5=DispersionPlot(text_Party_processed)
searChRes=get_all_phases_containing_tar_wrd(Search,text_Party_processed)
searChRes=searChRes.replace(Search,"\u0332".join(Search))
plt.close('all')
return searChRes,fdist_Party,img1,img2,img3,img4,img5,summary
Search_txt= "text"
filePdf = "file"
text = gr.Textbox(label='Context Based Search')
mfw=gr.Label(label="Most Relevant Topics (LLM Enhanced)")
plot1=gr.Image(label='Sentiment Analysis')
plot2=gr.Image(label='Subjectivity Analysis')
plot3=gr.Image(label='Word Cloud')
plot4=gr.Image(label='Frequency Distribution')
plot5=gr.Image(label='Dispersion Plot')
summary_output = gr.Textbox(label='AI-Generated Summary', lines=10)
with gr.Blocks(title='Manifesto Analysis') as demo:
gr.Markdown("# Manifesto Analysis with LLM Enhancement")
gr.Markdown("### Analyze political manifestos with advanced NLP and LLM techniques")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(label="Upload Manifesto PDF", file_types=[".pdf"])
search_input = gr.Textbox(label="Search Term", placeholder="Enter a term to search in the manifesto")
submit_btn = gr.Button("Analyze Manifesto")
with gr.Tabs():
with gr.TabItem("Summary"):
summary_output
with gr.TabItem("Search Results"):
text
with gr.TabItem("Key Topics"):
mfw
with gr.TabItem("Visualizations"):
with gr.Row():
with gr.Column(scale=1):
plot3
with gr.Column(scale=1):
plot4
with gr.Row():
with gr.Column(scale=1):
plot1
with gr.Column(scale=1):
plot2
with gr.Row():
plot5
submit_btn.click(
fn=analysis,
inputs=[file_input, search_input],
outputs=[text, mfw, plot1, plot2, plot3, plot4, plot5, summary_output]
)
gr.Examples(
examples=[
['Example/AAP_Manifesto_2019.pdf', 'government'],
['Example/Bjp_Manifesto_2019.pdf', 'environment'],
['Example/Congress_Manifesto_2019.pdf', 'safety']
],
inputs=[file_input, search_input]
)
demo.launch(debug=True, share=False)
#allow_screenshot=False,allow_flagging="never",
#examples=[['manifestos/Bjp_Manifesto_2019.pdf','modi'],['AAP_Manifesto_2019.pdf','delhi'],['manifestos/Congress_Manifesto_2019.pdf','safety']])
|