Sa-m's picture
Update app.py
2cc0cb0 verified
raw
history blame
10.7 kB
import random
import matplotlib.pyplot as plt
import nltk
from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from nltk.text import Text
from nltk.probability import FreqDist
from cleantext import clean
import textract
import urllib.request
from io import BytesIO
import sys
import pandas as pd
import cv2
import re
from wordcloud import WordCloud, ImageColorGenerator
from textblob import TextBlob
from PIL import Image
import os
import gradio as gr
from dotenv import load_dotenv
import groq
import json
import traceback
import numpy as np
import unidecode
import contractions
# Load environment variables
load_dotenv()
# Download NLTK resources
nltk.download(['stopwords', 'wordnet', 'words'])
nltk.download('punkt')
nltk.download('punkt_tab')
# Initialize Groq client
groq_api_key = os.getenv("GROQ_API_KEY")
groq_client = groq.Groq(api_key=groq_api_key) if groq_api_key else None
# Stopwords customization
stop_words = set(stopwords.words('english'))
stop_words.update('ask','much','thank','etc.', 'e', 'We', 'In', 'ed','pa', 'This','also', 'A', 'fu','To','5','ing', 'er', '2')
# --- Parsing & Preprocessing Functions ---
def Parsing(parsed_text):
try:
if hasattr(parsed_text, 'name'):
file_path = parsed_text.name
else:
file_path = parsed_text
raw_party = textract.process(file_path, encoding='ascii', method='pdfminer')
return clean(raw_party)
except Exception as e:
print(f"Error parsing PDF: {e}")
return f"Error parsing PDF: {e}"
def clean_text(text):
text = text.encode("ascii", errors="ignore").decode("ascii")
text = unidecode.unidecode(text)
text = contractions.fix(text)
text = re.sub(r"\n", " ", text)
text = re.sub(r"\t", " ", text)
text = re.sub(r"/ ", " ", text)
text = text.strip()
text = re.sub(" +", " ", text).strip()
text = [word for word in text.split() if word not in stop_words]
return ' '.join(text)
def Preprocess(textParty):
text1Party = re.sub('[^A-Za-z0-9]+', ' ', textParty)
pattern = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) + r')\b\s*')
text2Party = pattern.sub('', text1Party)
return text2Party
# --- Core Analysis Functions ---
def generate_summary(text):
if not groq_client:
return "Summarization is not available. Please set up your GROQ_API_KEY in the .env file."
if len(text) > 10000:
text = text[:10000]
try:
completion = groq_client.chat.completions.create(
model="llama3-8b-8192",
messages=[
{"role": "system", "content": "You are a helpful assistant that summarizes political manifestos. Provide a concise, objective summary that captures the key policy proposals, themes, and promises in the manifesto."},
{"role": "user", "content": f"Please summarize the following political manifesto text in about 300-500 words, focusing on the main policy areas, promises, and themes:\n\n{text}"}
],
temperature=0.3,
max_tokens=800
)
return completion.choices[0].message.content
except Exception as e:
return f"Error generating summary: {str(e)}"
def fDistance(text2Party):
word_tokens_party = word_tokenize(text2Party)
fdistance = FreqDist(word_tokens_party).most_common(10)
mem = {x[0]: x[1] for x in fdistance}
vectorizer = TfidfVectorizer(max_features=15, stop_words='english')
tfidf_matrix = vectorizer.fit_transform(sent_tokenize(text2Party))
feature_names = vectorizer.get_feature_names_out()
tfidf_scores = {}
for i, word in enumerate(feature_names):
scores = [tfidf_matrix[j, i] for j in range(len(sent_tokenize(text2Party))) if i < tfidf_matrix[j].shape[1]]
if scores:
tfidf_scores[word] = sum(scores) / len(scores)
combined_scores = {}
for word in set(list(mem.keys()) + list(tfidf_scores.keys())):
freq_score = mem.get(word, 0) / max(mem.values()) if mem else 0
tfidf_score = tfidf_scores.get(word, 0) / max(tfidf_scores.values()) if tfidf_scores else 0
combined_scores[word] = (freq_score * 0.3) + (tfidf_score * 0.7)
top_words = dict(sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)[:10])
return normalize(top_words)
def normalize(d, target=1.0):
raw = sum(d.values())
factor = target / raw if raw != 0 else 0
return {key: value * factor for key, value in d.items()}
# --- Visualization Functions with Error Handling ---
def safe_plot(func, *args, **kwargs):
try:
plt.clf()
func(*args, **kwargs)
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
return Image.open(buf)
except Exception as e:
print(f"Plotting error: {e}")
return None
def fDistancePlot(text2Party):
return safe_plot(lambda: FreqDist(word_tokenize(text2Party)).plot(15, title='Frequency Distribution'))
def DispersionPlot(textParty):
try:
word_tokens_party = word_tokenize(textParty)
moby = Text(word_tokens_party) # Ensure Text is imported
fdistance = FreqDist(word_tokens_party)
word_Lst = [fdistance.most_common(6)[x][0] for x in range(5)]
plt.figure(figsize=(4, 3))
plt.title('Dispersion Plot')
moby.dispersion_plot(word_Lst)
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img = Image.open(buf)
plt.clf()
return img
except Exception as e:
print(f"Dispersion plot error: {e}")
return None
def word_cloud_generator(parsed_text_name, text_Party):
try:
parsed = parsed_text_name.lower()
if 'bjp' in parsed:
mask_path = 'bjpImg2.jpeg'
elif 'congress' in parsed:
mask_path = 'congress3.jpeg'
elif 'aap' in parsed:
mask_path = 'aapMain2.jpg'
else:
mask_path = None
if mask_path and os.path.exists(mask_path):
orgImg = Image.open(mask_path)
mask = np.array(orgImg)
wordcloud = WordCloud(max_words=3000, mask=mask).generate(text_Party)
plt.imshow(wordcloud)
else:
wordcloud = WordCloud(max_words=2000).generate(text_Party)
plt.imshow(wordcloud)
plt.axis("off")
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
return Image.open(buf)
except Exception as e:
print(f"Word cloud error: {e}")
return None
# --- Main Analysis Function ---
def analysis(Manifesto, Search):
try:
if Manifesto is None:
return "No file uploaded", {}, None, None, None, None, None, "No file uploaded"
if Search.strip() == "":
Search = "government"
raw_party = Parsing(Manifesto)
if isinstance(raw_party, str) and raw_party.startswith("Error"):
return raw_party, {}, None, None, None, None, None, "Parsing failed"
text_Party = clean_text(raw_party)
text_Party_processed = Preprocess(text_Party)
summary = generate_summary(raw_party)
df = pd.DataFrame([{'Content': text_Party_processed}], columns=['Content'])
df['Subjectivity'] = df['Content'].apply(lambda x: TextBlob(x).sentiment.subjectivity)
df['Polarity'] = df['Content'].apply(lambda x: TextBlob(x).sentiment.polarity)
df['Polarity_Label'] = df['Polarity'].apply(lambda x: 'Positive' if x > 0 else 'Negative' if x < 0 else 'Neutral')
df['Subjectivity_Label'] = df['Subjectivity'].apply(lambda x: 'High' if x > 0.5 else 'Low')
# Generate Plots with Safe Plotting
sentiment_plot = safe_plot(lambda: df['Polarity_Label'].value_counts().plot(kind='bar', color="#FF9F45", title='Sentiment Analysis'))
subjectivity_plot = safe_plot(lambda: df['Subjectivity_Label'].value_counts().plot(kind='bar', color="#B667F1", title='Subjectivity Analysis'))
freq_plot = fDistancePlot(text_Party_processed)
dispersion_plot = DispersionPlot(text_Party_processed)
wordcloud = word_cloud_generator(Manifesto.name, text_Party_processed)
fdist_Party = fDistance(text_Party_processed)
searChRes = get_all_phases_containing_tar_wrd(Search, text_Party_processed)
return searChRes, fdist_Party, sentiment_plot, subjectivity_plot, wordcloud, freq_plot, dispersion_plot, summary
except Exception as e:
error_msg = f"Critical error: {str(e)}"
print(error_msg)
traceback.print_exc()
return error_msg, {}, None, None, None, None, None, "Analysis failed"
# --- Gradio Interface ---
Search_txt = "text"
filePdf = "file"
with gr.Blocks(title='Manifesto Analysis') as demo:
gr.Markdown("# Manifesto Analysis with LLM Enhancement")
with gr.Row():
with gr.Column():
file_input = gr.File(label="Upload Manifesto PDF", file_types=[".pdf"])
search_input = gr.Textbox(label="Search Term", placeholder="Enter a term to search in the manifesto")
submit_btn = gr.Button("Analyze Manifesto")
with gr.Tabs():
with gr.TabItem("Summary"): gr.Textbox(label='AI-Generated Summary', lines=10)
with gr.TabItem("Search Results"): gr.Textbox(label='Context Based Search')
with gr.TabItem("Key Topics"): gr.Label(label="Most Relevant Topics (LLM Enhanced)")
with gr.TabItem("Visualizations"):
with gr.Row():
gr.Image(label='Sentiment Analysis'), gr.Image(label='Subjectivity Analysis')
with gr.Row():
gr.Image(label='Word Cloud'), gr.Image(label='Frequency Distribution')
gr.Image(label='Dispersion Plot')
submit_btn.click(
fn=analysis,
inputs=[file_input, search_input],
outputs=[
gr.Textbox(label='Context Based Search'),
gr.Label(label="Most Relevant Topics (LLM Enhanced)"),
gr.Image(label='Sentiment Analysis'),
gr.Image(label='Subjectivity Analysis'),
gr.Image(label='Word Cloud'),
gr.Image(label='Frequency Distribution'),
gr.Image(label='Dispersion Plot'),
gr.Textbox(label='AI-Generated Summary', lines=10)
]
)
gr.Examples(
examples=[
["Example/AAP_Manifesto_2019.pdf", "government"],
["Example/Bjp_Manifesto_2019.pdf", "environment"],
["Example/Congress_Manifesto_2019.pdf", "safety"]
],
inputs=[file_input, search_input]
)
demo.launch(debug=True, share=False, show_error=True)