|
import os |
|
import base64 |
|
import logging |
|
import uuid |
|
import requests |
|
import torch |
|
from flask import Flask, request, jsonify, send_file |
|
from PIL import Image |
|
from io import BytesIO |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import to_pil_image |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPVisionModelWithProjection, |
|
CLIPTextModel, |
|
CLIPTextModelWithProjection, |
|
AutoTokenizer |
|
) |
|
from diffusers import DDPMScheduler, AutoencoderKL |
|
from preprocess.humanparsing.run_parsing import Parsing |
|
from preprocess.openpose.run_openpose import OpenPose |
|
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation |
|
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline |
|
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref |
|
from src.unet_hacked_tryon import UNet2DConditionModel |
|
import apply_net |
|
|
|
app = Flask(__name__) |
|
|
|
base_path = 'yisol/IDM-VTON' |
|
example_path = os.path.join(os.path.dirname(__file__), 'example') |
|
|
|
|
|
def load_model(name, subfolder, dtype=torch.float16): |
|
return torch.load( |
|
os.path.join(base_path, subfolder, name), |
|
map_location=torch.device('cuda' if torch.cuda.is_available() else 'cpu'), |
|
dtype=dtype |
|
) |
|
|
|
unet = load_model("unet.pt", "unet") |
|
tokenizer_one = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer", use_fast=False) |
|
tokenizer_two = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer_2", use_fast=False) |
|
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler") |
|
|
|
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16) |
|
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16) |
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16) |
|
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16) |
|
|
|
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16) |
|
|
|
parsing_model = Parsing(0) |
|
openpose_model = OpenPose(0) |
|
|
|
|
|
for model in [unet, UNet_Encoder, image_encoder, vae, text_encoder_one, text_encoder_two]: |
|
model.requires_grad_(False) |
|
|
|
tensor_transfrom = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
]) |
|
|
|
pipe = TryonPipeline.from_pretrained( |
|
base_path, |
|
unet=unet, |
|
vae=vae, |
|
feature_extractor=CLIPImageProcessor(), |
|
text_encoder=text_encoder_one, |
|
text_encoder_2=text_encoder_two, |
|
tokenizer=tokenizer_one, |
|
tokenizer_2=tokenizer_two, |
|
scheduler=noise_scheduler, |
|
image_encoder=image_encoder, |
|
torch_dtype=torch.float16 |
|
) |
|
pipe.unet_encoder = UNet_Encoder |
|
|
|
def pil_to_binary_mask(pil_image, threshold=0): |
|
np_image = np.array(pil_image.convert("L")) |
|
binary_mask = np_image > threshold |
|
mask = (binary_mask * 255).astype(np.uint8) |
|
return Image.fromarray(mask) |
|
|
|
def get_image_from_url(url): |
|
try: |
|
response = requests.get(url) |
|
response.raise_for_status() |
|
return Image.open(BytesIO(response.content)) |
|
except Exception as e: |
|
logging.error(f"Error fetching image from URL: {e}") |
|
raise |
|
|
|
def decode_image_from_base64(base64_str): |
|
try: |
|
img_data = base64.b64decode(base64_str) |
|
return Image.open(BytesIO(img_data)) |
|
except Exception as e: |
|
logging.error(f"Error decoding image: {e}") |
|
raise |
|
|
|
def encode_image_to_base64(img): |
|
try: |
|
buffered = BytesIO() |
|
img.save(buffered, format="PNG") |
|
return base64.b64encode(buffered.getvalue()).decode("utf-8") |
|
except Exception as e: |
|
logging.error(f"Error encoding image: {e}") |
|
raise |
|
|
|
def save_image(img): |
|
unique_name = f"{uuid.uuid4()}.webp" |
|
img.save(unique_name, format="WEBP", lossless=True) |
|
return unique_name |
|
|
|
@spaces.GPU |
|
def start_tryon(human_dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, categorie='upper_body'): |
|
device = "cuda" |
|
openpose_model.preprocessor.body_estimation.model.to(device) |
|
pipe.to(device) |
|
pipe.unet_encoder.to(device) |
|
|
|
garm_img = garm_img.convert("RGB").resize((768, 1024)) |
|
human_img_orig = human_dict["background"].convert("RGB") |
|
|
|
if is_checked_crop: |
|
width, height = human_img_orig.size |
|
target_width = min(width, height * (3 / 4)) |
|
target_height = min(height, width * (4 / 3)) |
|
left = (width - target_width) / 2 |
|
top = (height - target_height) / 2 |
|
cropped_img = human_img_orig.crop((left, top, width - left, height - top)) |
|
crop_size = cropped_img.size |
|
human_img = cropped_img.resize((768, 1024)) |
|
else: |
|
human_img = human_img_orig.resize((768, 1024)) |
|
|
|
if is_checked: |
|
keypoints = openpose_model(human_img.resize((384, 512))) |
|
model_parse, _ = parsing_model(human_img.resize((384, 512))) |
|
mask, mask_gray = get_mask_location('hd', categorie, model_parse, keypoints) |
|
mask = mask.resize((768, 1024)) |
|
else: |
|
mask = pil_to_binary_mask(human_dict['layers'][0].convert("RGB").resize((768, 1024))) |
|
|
|
mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img) |
|
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0) |
|
|
|
human_img_arg = _apply_exif_orientation(human_img.resize((384, 512))) |
|
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR") |
|
|
|
args = apply_net.create_argument_parser().parse_args( |
|
('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda') |
|
) |
|
pose_img = args.func(args, human_img_arg)[:, :, ::-1] |
|
pose_img = Image.fromarray(pose_img).resize((768, 1024)) |
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
prompt = f"model is wearing {garment_des}" |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
prompt_embeds = pipe.encode_prompt(prompt, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=negative_prompt) |
|
prompt = f"a photo of {garment_des}" |
|
prompt_embeds_c = pipe.encode_prompt(prompt, num_images_per_prompt=1, do_classifier_free_guidance=False, negative_prompt=negative_prompt) |
|
|
|
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16) |
|
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16) |
|
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None |
|
images = pipe( |
|
prompt_embeds=prompt_embeds.to(device, torch.float16), |
|
negative_prompt_embeds=prompt_embeds[1].to(device, torch.float16), |
|
pooled_prompt_embeds=prompt_embeds[2].to(device, torch.float16), |
|
negative_pooled_prompt_embeds=prompt_embeds[3].to(device, torch.float16), |
|
num_inference_steps=denoise_steps, |
|
generator=generator, |
|
strength=1.0, |
|
pose_img=pose_img, |
|
text_embeds_cloth=prompt_embeds_c.to(device, torch.float16), |
|
cloth=garm_tensor, |
|
mask_image=mask, |
|
image=human_img, |
|
height=1024, |
|
width=768, |
|
ip_adapter_image=garm_img.resize((768, 1024)), |
|
guidance_scale=2.0 |
|
)[0] |
|
|
|
if is_checked_crop: |
|
out_img = images[0].resize(crop_size) |
|
human_img_orig.paste(out_img, (int(left), int(top))) |
|
return human_img_orig, mask_gray |
|
else: |
|
return images[0], mask_gray |
|
|
|
def clear_gpu_memory(): |
|
torch.cuda.empty_cache() |
|
torch.cuda.synchronize() |
|
|
|
def process_image(image_data): |
|
if image_data.startswith(('http://', 'https://')): |
|
return get_image_from_url(image_data) |
|
return decode_image_from_base64(image_data) |
|
|
|
@app.route('/tryon', methods=['POST']) |
|
def tryon(): |
|
data = request.json |
|
try: |
|
human_image_data = process_image(data['human_image']) |
|
garment_image_data = process_image(data['garment_image']) |
|
category = data.get('category', 'upper_body') |
|
description = data.get('description', '') |
|
checked = data.get('checked', False) |
|
checked_crop = data.get('checked_crop', False) |
|
denoise_steps = data.get('denoise_steps', 50) |
|
seed = data.get('seed', None) |
|
|
|
human_dict = { |
|
"background": human_image_data, |
|
"layers": [human_image_data], |
|
} |
|
|
|
result_img, mask_img = start_tryon( |
|
human_dict, |
|
garment_image_data, |
|
description, |
|
checked, |
|
checked_crop, |
|
denoise_steps, |
|
seed, |
|
category |
|
) |
|
|
|
encoded_image = encode_image_to_base64(result_img) |
|
encoded_mask = encode_image_to_base64(mask_img) |
|
|
|
|
|
|
|
return jsonify({ |
|
'result_image': encoded_image, |
|
'mask_image': encoded_mask, |
|
}) |
|
|
|
except Exception as e: |
|
logging.error(f"Error in /tryon endpoint: {e}") |
|
return jsonify({'error': str(e)}), 500 |
|
|
|
|
|
@app.route('/api/get_image/<image_id>', methods=['GET']) |
|
def get_image(image_id): |
|
|
|
image_path = image_id |
|
|
|
|
|
try: |
|
return send_file(image_path, mimetype='image/webp') |
|
except FileNotFoundError: |
|
return jsonify({'error': 'Image not found'}), 404 |
|
|
|
if __name__ == "__main__": |
|
app.run(debug=False, host="0.0.0.0", port=7860) |
|
|