Spaces:
Saad0KH
/
Running on Zero

IDM-VTON / app.py
Saad0KH's picture
Update app.py
b56c80f verified
raw
history blame
9.83 kB
import os
import base64
import logging
import uuid
import requests
import torch
from flask import Flask, request, jsonify, send_file
from PIL import Image
from io import BytesIO
from torchvision import transforms
from torchvision.transforms.functional import to_pil_image
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPTextModel,
CLIPTextModelWithProjection,
AutoTokenizer
)
from diffusers import DDPMScheduler, AutoencoderKL
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
import apply_net
app = Flask(__name__)
base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')
# Load models
def load_model(name, subfolder, dtype=torch.float16):
return torch.load(
os.path.join(base_path, subfolder, name),
map_location=torch.device('cuda' if torch.cuda.is_available() else 'cpu'),
dtype=dtype
)
unet = load_model("unet.pt", "unet")
tokenizer_one = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer", use_fast=False)
tokenizer_two = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer_2", use_fast=False)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16)
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16)
parsing_model = Parsing(0)
openpose_model = OpenPose(0)
# Disable gradient computation
for model in [unet, UNet_Encoder, image_encoder, vae, text_encoder_one, text_encoder_two]:
model.requires_grad_(False)
tensor_transfrom = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
pipe = TryonPipeline.from_pretrained(
base_path,
unet=unet,
vae=vae,
feature_extractor=CLIPImageProcessor(),
text_encoder=text_encoder_one,
text_encoder_2=text_encoder_two,
tokenizer=tokenizer_one,
tokenizer_2=tokenizer_two,
scheduler=noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16
)
pipe.unet_encoder = UNet_Encoder
def pil_to_binary_mask(pil_image, threshold=0):
np_image = np.array(pil_image.convert("L"))
binary_mask = np_image > threshold
mask = (binary_mask * 255).astype(np.uint8)
return Image.fromarray(mask)
def get_image_from_url(url):
try:
response = requests.get(url)
response.raise_for_status()
return Image.open(BytesIO(response.content))
except Exception as e:
logging.error(f"Error fetching image from URL: {e}")
raise
def decode_image_from_base64(base64_str):
try:
img_data = base64.b64decode(base64_str)
return Image.open(BytesIO(img_data))
except Exception as e:
logging.error(f"Error decoding image: {e}")
raise
def encode_image_to_base64(img):
try:
buffered = BytesIO()
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
except Exception as e:
logging.error(f"Error encoding image: {e}")
raise
def save_image(img):
unique_name = f"{uuid.uuid4()}.webp"
img.save(unique_name, format="WEBP", lossless=True)
return unique_name
@spaces.GPU
def start_tryon(human_dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, categorie='upper_body'):
device = "cuda"
openpose_model.preprocessor.body_estimation.model.to(device)
pipe.to(device)
pipe.unet_encoder.to(device)
garm_img = garm_img.convert("RGB").resize((768, 1024))
human_img_orig = human_dict["background"].convert("RGB")
if is_checked_crop:
width, height = human_img_orig.size
target_width = min(width, height * (3 / 4))
target_height = min(height, width * (4 / 3))
left = (width - target_width) / 2
top = (height - target_height) / 2
cropped_img = human_img_orig.crop((left, top, width - left, height - top))
crop_size = cropped_img.size
human_img = cropped_img.resize((768, 1024))
else:
human_img = human_img_orig.resize((768, 1024))
if is_checked:
keypoints = openpose_model(human_img.resize((384, 512)))
model_parse, _ = parsing_model(human_img.resize((384, 512)))
mask, mask_gray = get_mask_location('hd', categorie, model_parse, keypoints)
mask = mask.resize((768, 1024))
else:
mask = pil_to_binary_mask(human_dict['layers'][0].convert("RGB").resize((768, 1024)))
mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args(
('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda')
)
pose_img = args.func(args, human_img_arg)[:, :, ::-1]
pose_img = Image.fromarray(pose_img).resize((768, 1024))
with torch.no_grad(), torch.cuda.amp.autocast():
prompt = f"model is wearing {garment_des}"
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
prompt_embeds = pipe.encode_prompt(prompt, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=negative_prompt)
prompt = f"a photo of {garment_des}"
prompt_embeds_c = pipe.encode_prompt(prompt, num_images_per_prompt=1, do_classifier_free_guidance=False, negative_prompt=negative_prompt)
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
images = pipe(
prompt_embeds=prompt_embeds.to(device, torch.float16),
negative_prompt_embeds=prompt_embeds[1].to(device, torch.float16),
pooled_prompt_embeds=prompt_embeds[2].to(device, torch.float16),
negative_pooled_prompt_embeds=prompt_embeds[3].to(device, torch.float16),
num_inference_steps=denoise_steps,
generator=generator,
strength=1.0,
pose_img=pose_img,
text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
cloth=garm_tensor,
mask_image=mask,
image=human_img,
height=1024,
width=768,
ip_adapter_image=garm_img.resize((768, 1024)),
guidance_scale=2.0
)[0]
if is_checked_crop:
out_img = images[0].resize(crop_size)
human_img_orig.paste(out_img, (int(left), int(top)))
return human_img_orig, mask_gray
else:
return images[0], mask_gray
def clear_gpu_memory():
torch.cuda.empty_cache()
torch.cuda.synchronize()
def process_image(image_data):
if image_data.startswith(('http://', 'https://')):
return get_image_from_url(image_data)
return decode_image_from_base64(image_data)
@app.route('/tryon', methods=['POST'])
def tryon():
data = request.json
try:
human_image_data = process_image(data['human_image'])
garment_image_data = process_image(data['garment_image'])
category = data.get('category', 'upper_body')
description = data.get('description', '')
checked = data.get('checked', False)
checked_crop = data.get('checked_crop', False)
denoise_steps = data.get('denoise_steps', 50)
seed = data.get('seed', None)
human_dict = {
"background": human_image_data,
"layers": [human_image_data],
}
result_img, mask_img = start_tryon(
human_dict,
garment_image_data,
description,
checked,
checked_crop,
denoise_steps,
seed,
category
)
encoded_image = encode_image_to_base64(result_img)
encoded_mask = encode_image_to_base64(mask_img)
#clear_gpu_memory()
return jsonify({
'result_image': encoded_image,
'mask_image': encoded_mask,
})
except Exception as e:
logging.error(f"Error in /tryon endpoint: {e}")
return jsonify({'error': str(e)}), 500
# Route pour récupérer l'image générée
@app.route('/api/get_image/<image_id>', methods=['GET'])
def get_image(image_id):
# Construire le chemin complet de l'image
image_path = image_id # Assurez-vous que le nom de fichier correspond à celui que vous avez utilisé lors de la sauvegarde
# Renvoyer l'image
try:
return send_file(image_path, mimetype='image/webp')
except FileNotFoundError:
return jsonify({'error': 'Image not found'}), 404
if __name__ == "__main__":
app.run(debug=False, host="0.0.0.0", port=7860)