Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import cv2 | |
import gradio as gr | |
import huggingface_hub | |
import insightface | |
import numpy as np | |
import onnxruntime as ort | |
TITLE = "insightface Person Detection" | |
DESCRIPTION = "https://github.com/deepinsight/insightface/tree/master/examples/person_detection" | |
def load_model(): | |
path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx") | |
options = ort.SessionOptions() | |
options.intra_op_num_threads = 8 | |
options.inter_op_num_threads = 8 | |
session = ort.InferenceSession( | |
path, sess_options=options, providers=["CPUExecutionProvider", "CUDAExecutionProvider"] | |
) | |
model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, session=session) | |
return model | |
def detect_person( | |
img: np.ndarray, detector: insightface.model_zoo.retinaface.RetinaFace | |
) -> tuple[np.ndarray, np.ndarray]: | |
bboxes, kpss = detector.detect(img) | |
bboxes = np.round(bboxes[:, :4]).astype(int) | |
kpss = np.round(kpss).astype(int) | |
kpss[:, :, 0] = np.clip(kpss[:, :, 0], 0, img.shape[1]) | |
kpss[:, :, 1] = np.clip(kpss[:, :, 1], 0, img.shape[0]) | |
vbboxes = bboxes.copy() | |
vbboxes[:, 0] = kpss[:, 0, 0] | |
vbboxes[:, 1] = kpss[:, 0, 1] | |
vbboxes[:, 2] = kpss[:, 4, 0] | |
vbboxes[:, 3] = kpss[:, 4, 1] | |
return bboxes, vbboxes | |
def visualize(image: np.ndarray, bboxes: np.ndarray, vbboxes: np.ndarray) -> list[np.ndarray]: | |
person_images = [] | |
for i in range(bboxes.shape[0]): | |
bbox = bboxes[i] | |
x1, y1, x2, y2 = bbox | |
person_img = image[y1:y2, x1:x2] | |
# Append the cropped person image | |
person_images.append(person_img) | |
return person_images | |
detector = load_model() | |
detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640)) | |
def detect(image: np.ndarray) -> list[np.ndarray]: | |
if image is None: | |
return [] | |
image = image[:, :, ::-1] # RGB -> BGR | |
bboxes, vbboxes = detect_person(image, detector) | |
person_images = visualize(image, bboxes, vbboxes) | |
return [img[:, :, ::-1] for img in person_images] # BGR -> RGB | |
demo = gr.Interface( | |
fn=detect, | |
inputs=gr.Image(label="Input", type="numpy"), | |
outputs=gr.Gallery(label="Detected Persons"), | |
title=TITLE, | |
description=DESCRIPTION, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=10).launch() | |