Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import functools | |
import pathlib | |
import cv2 | |
import gradio as gr | |
import huggingface_hub | |
import insightface | |
import numpy as np | |
import onnxruntime as ort | |
TITLE = 'insightface Person Detection' | |
DESCRIPTION = 'https://github.com/deepinsight/insightface/tree/master/examples/person_detection' | |
def load_model(): | |
path = huggingface_hub.hf_hub_download('public-data/insightface', | |
'models/scrfd_person_2.5g.onnx') | |
options = ort.SessionOptions() | |
options.intra_op_num_threads = 8 | |
options.inter_op_num_threads = 8 | |
session = ort.InferenceSession( | |
path, | |
sess_options=options, | |
providers=['CPUExecutionProvider', 'CUDAExecutionProvider']) | |
model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, | |
session=session) | |
return model | |
def detect_person( | |
img: np.ndarray, detector: insightface.model_zoo.retinaface.RetinaFace | |
) -> tuple[np.ndarray, np.ndarray]: | |
bboxes, kpss = detector.detect(img) | |
bboxes = np.round(bboxes[:, :4]).astype(int) | |
kpss = np.round(kpss).astype(int) | |
kpss[:, :, 0] = np.clip(kpss[:, :, 0], 0, img.shape[1]) | |
kpss[:, :, 1] = np.clip(kpss[:, :, 1], 0, img.shape[0]) | |
vbboxes = bboxes.copy() | |
vbboxes[:, 0] = kpss[:, 0, 0] | |
vbboxes[:, 1] = kpss[:, 0, 1] | |
vbboxes[:, 2] = kpss[:, 4, 0] | |
vbboxes[:, 3] = kpss[:, 4, 1] | |
return bboxes, vbboxes | |
def visualize(image: np.ndarray, bboxes: np.ndarray, | |
vbboxes: np.ndarray) -> np.ndarray: | |
res = image.copy() | |
for i in range(bboxes.shape[0]): | |
bbox = bboxes[i] | |
vbbox = vbboxes[i] | |
x1, y1, x2, y2 = bbox | |
vx1, vy1, vx2, vy2 = vbbox | |
cv2.rectangle(res, (x1, y1), (x2, y2), (0, 255, 0), 1) | |
alpha = 0.8 | |
color = (255, 0, 0) | |
for c in range(3): | |
res[vy1:vy2, vx1:vx2, | |
c] = res[vy1:vy2, vx1:vx2, | |
c] * alpha + color[c] * (1.0 - alpha) | |
cv2.circle(res, (vx1, vy1), 1, color, 2) | |
cv2.circle(res, (vx1, vy2), 1, color, 2) | |
cv2.circle(res, (vx2, vy1), 1, color, 2) | |
cv2.circle(res, (vx2, vy2), 1, color, 2) | |
return res | |
def detect(image: np.ndarray, detector) -> np.ndarray: | |
image = image[:, :, ::-1] # RGB -> BGR | |
bboxes, vbboxes = detect_person(image, detector) | |
res = visualize(image, bboxes, vbboxes) | |
return res[:, :, ::-1] # BGR -> RGB | |
detector = load_model() | |
detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640)) | |
fn = functools.partial(detect, detector=detector) | |
image_dir = pathlib.Path('images') | |
examples = [[path.as_posix()] for path in sorted(image_dir.glob('*.jpg'))] | |
gr.Interface( | |
fn=fn, | |
inputs=gr.Image(label='Input', type='numpy'), | |
outputs=gr.Image(label='Output', height=600), | |
examples=examples, | |
examples_per_page=30, | |
title=TITLE, | |
description=DESCRIPTION, | |
).queue().launch() | |