Spaces:
Sleeping
Sleeping
from __future__ import annotations | |
import pathlib | |
import cv2 | |
import gradio as gr | |
import huggingface_hub | |
import insightface | |
import numpy as np | |
import onnxruntime as ort | |
from PIL import Image | |
TITLE = "insightface Person Detection" | |
DESCRIPTION = "https://github.com/deepinsight/insightface/tree/master/examples/person_detection" | |
def load_model(): | |
path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx") | |
options = ort.SessionOptions() | |
options.intra_op_num_threads = 8 | |
options.inter_op_num_threads = 8 | |
session = ort.InferenceSession( | |
path, sess_options=options, providers=["CPUExecutionProvider"] | |
) | |
model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, session=session) | |
return model | |
def detect_person( | |
img: np.ndarray, detector: insightface.model_zoo.retinaface.RetinaFace | |
) -> tuple[np.ndarray, np.ndarray]: | |
bboxes, kpss = detector.detect(img) | |
bboxes = np.round(bboxes[:, :4]).astype(int) | |
kpss = np.round(kpss).astype(int) | |
kpss[:, :, 0] = np.clip(kpss[:, :, 0], 0, img.shape[1]) | |
kpss[:, :, 1] = np.clip(kpss[:, :, 1], 0, img.shape[0]) | |
vbboxes = bboxes.copy() | |
vbboxes[:, 0] = kpss[:, 0, 0] | |
vbboxes[:, 1] = kpss[:, 0, 1] | |
vbboxes[:, 2] = kpss[:, 4, 0] | |
vbboxes[:, 3] = kpss[:, 4, 1] | |
return bboxes, vbboxes | |
def visualize(image: np.ndarray, bboxes: np.ndarray, vbboxes: np.ndarray) -> np.ndarray: | |
res = image.copy() | |
for i in range(bboxes.shape[0]): | |
bbox = bboxes[i] | |
vbbox = vbboxes[i] | |
x1, y1, x2, y2 = bbox | |
vx1, vy1, vx2, vy2 = vbbox | |
cv2.rectangle(res, (x1, y1), (x2, y2), (0, 255, | |