Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,86 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
pil_image.save(output_bytes, format=format, **params)
|
9 |
-
output_bytes.seek(0) # Rewind the BytesIO object to the beginning
|
10 |
-
return output_bytes.read()
|
11 |
|
12 |
-
def
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
def
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
x1, y1, x2, y2 = bbox
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
def detect(image: np.ndarray) ->
|
25 |
if image is None:
|
26 |
-
return
|
27 |
|
28 |
image = image[:, :, ::-1] # RGB -> BGR
|
29 |
bboxes, vbboxes = detect_person(image, detector)
|
30 |
res = visualize(image, bboxes, vbboxes)
|
31 |
-
|
32 |
-
processed_image = Image.fromarray(res[:, :, ::-1], 'RGB') # BGR -> RGB
|
33 |
-
return processed_image, person_images
|
34 |
-
|
35 |
-
def process_image(image: Image.Image) -> tuple[Image.Image, list[Image.Image]]:
|
36 |
-
try:
|
37 |
-
np_image = np.array(image)
|
38 |
-
processed_image, person_images = detect(np_image)
|
39 |
-
return processed_image, person_images
|
40 |
-
except Exception as e:
|
41 |
-
print(f"An error occurred: {e}")
|
42 |
-
return None, []
|
43 |
-
|
44 |
-
def build_gradio_interface():
|
45 |
-
with gr.Blocks() as demo:
|
46 |
-
gr.Markdown("## Person Detection App")
|
47 |
-
|
48 |
-
with gr.Row():
|
49 |
-
input_image = gr.Image(type="pil", label="Upload an Image")
|
50 |
-
output_image = gr.Image(type="pil", label="Processed Image")
|
51 |
-
gallery = gr.Gallery(label="Detected Persons")
|
52 |
|
53 |
-
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
# Example usage
|
58 |
if __name__ == "__main__":
|
59 |
-
demo
|
60 |
-
demo.launch()
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import pathlib
|
6 |
+
|
7 |
+
import cv2
|
8 |
import gradio as gr
|
9 |
+
import huggingface_hub
|
10 |
+
import insightface
|
11 |
+
import numpy as np
|
12 |
+
import onnxruntime as ort
|
13 |
|
14 |
+
TITLE = "insightface Person Detection"
|
15 |
+
DESCRIPTION = "https://github.com/deepinsight/insightface/tree/master/examples/person_detection"
|
|
|
|
|
|
|
16 |
|
17 |
+
def load_model():
|
18 |
+
path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx")
|
19 |
+
options = ort.SessionOptions()
|
20 |
+
options.intra_op_num_threads = 8
|
21 |
+
options.inter_op_num_threads = 8
|
22 |
+
session = ort.InferenceSession(
|
23 |
+
path, sess_options=options, providers=["CPUExecutionProvider", "CUDAExecutionProvider"]
|
24 |
+
)
|
25 |
+
model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, session=session)
|
26 |
+
return model
|
27 |
|
28 |
+
def detect_person(
|
29 |
+
img: np.ndarray, detector: insightface.model_zoo.retinaface.RetinaFace
|
30 |
+
) -> tuple[np.ndarray, np.ndarray]:
|
31 |
+
bboxes, kpss = detector.detect(img)
|
32 |
+
bboxes = np.round(bboxes[:, :4]).astype(int)
|
33 |
+
kpss = np.round(kpss).astype(int)
|
34 |
+
kpss[:, :, 0] = np.clip(kpss[:, :, 0], 0, img.shape[1])
|
35 |
+
kpss[:, :, 1] = np.clip(kpss[:, :, 1], 0, img.shape[0])
|
36 |
+
vbboxes = bboxes.copy()
|
37 |
+
vbboxes[:, 0] = kpss[:, 0, 0]
|
38 |
+
vbboxes[:, 1] = kpss[:, 0, 1]
|
39 |
+
vbboxes[:, 2] = kpss[:, 4, 0]
|
40 |
+
vbboxes[:, 3] = kpss[:, 4, 1]
|
41 |
+
return bboxes, vbboxes
|
42 |
+
|
43 |
+
def visualize(image: np.ndarray, bboxes: np.ndarray, vbboxes: np.ndarray) -> np.ndarray:
|
44 |
+
res = image.copy()
|
45 |
+
for i in range(bboxes.shape[0]):
|
46 |
+
bbox = bboxes[i]
|
47 |
+
vbbox = vbboxes[i]
|
48 |
x1, y1, x2, y2 = bbox
|
49 |
+
vx1, vy1, vx2, vy2 = vbbox
|
50 |
+
cv2.rectangle(res, (x1, y1), (x2, y2), (0, 255, 0), 1)
|
51 |
+
alpha = 0.8
|
52 |
+
color = (255, 0, 0)
|
53 |
+
for c in range(3):
|
54 |
+
res[vy1:vy2, vx1:vx2, c] = res[vy1:vy2, vx1:vx2, c] * alpha + color[c] * (1.0 - alpha)
|
55 |
+
cv2.circle(res, (vx1, vy1), 1, color, 2)
|
56 |
+
cv2.circle(res, (vx1, vy2), 1, color, 2)
|
57 |
+
cv2.circle(res, (vx2, vy1), 1, color, 2)
|
58 |
+
cv2.circle(res, (vx2, vy2), 1, color, 2)
|
59 |
+
return res
|
60 |
+
|
61 |
+
detector = load_model()
|
62 |
+
detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640))
|
63 |
|
64 |
+
def detect(image: np.ndarray) -> np.ndarray:
|
65 |
if image is None:
|
66 |
+
return np.array([]) # Retourne une image vide si aucune image n'est fournie
|
67 |
|
68 |
image = image[:, :, ::-1] # RGB -> BGR
|
69 |
bboxes, vbboxes = detect_person(image, detector)
|
70 |
res = visualize(image, bboxes, vbboxes)
|
71 |
+
return res[:, :, ::-1] # BGR -> RGB
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
examples = sorted(pathlib.Path("images").glob("*.jpg"))
|
74 |
|
75 |
+
demo = gr.Interface(
|
76 |
+
fn=detect,
|
77 |
+
inputs=gr.Image(label="Input", type="numpy"),
|
78 |
+
outputs=gr.Image(label="Output"),
|
79 |
+
examples=examples,
|
80 |
+
examples_per_page=30,
|
81 |
+
title=TITLE,
|
82 |
+
description=DESCRIPTION,
|
83 |
+
)
|
84 |
|
|
|
85 |
if __name__ == "__main__":
|
86 |
+
demo.queue(max_size=10).launch()
|
|