Spaces:
Running
Running
Rename app.py to chromedb_service.py
Browse files- app.py +0 -78
- chromedb_service.py +87 -0
app.py
DELETED
@@ -1,78 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
-
import cv2
|
6 |
-
import gradio as gr
|
7 |
-
import huggingface_hub
|
8 |
-
import insightface
|
9 |
-
import numpy as np
|
10 |
-
import onnxruntime as ort
|
11 |
-
from PIL import Image
|
12 |
-
|
13 |
-
TITLE = "insightface Person Detection"
|
14 |
-
DESCRIPTION = "https://github.com/deepinsight/insightface/tree/master/examples/person_detection"
|
15 |
-
|
16 |
-
def load_model():
|
17 |
-
path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx")
|
18 |
-
options = ort.SessionOptions()
|
19 |
-
options.intra_op_num_threads = 8
|
20 |
-
options.inter_op_num_threads = 8
|
21 |
-
session = ort.InferenceSession(
|
22 |
-
path, sess_options=options, providers=["CPUExecutionProvider", "CUDAExecutionProvider"]
|
23 |
-
)
|
24 |
-
model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, session=session)
|
25 |
-
return model
|
26 |
-
|
27 |
-
def detect_person(
|
28 |
-
img: np.ndarray, detector: insightface.model_zoo.retinaface.RetinaFace
|
29 |
-
) -> tuple[np.ndarray, np.ndarray]:
|
30 |
-
bboxes, kpss = detector.detect(img)
|
31 |
-
bboxes = np.round(bboxes[:, :4]).astype(int)
|
32 |
-
kpss = np.round(kpss).astype(int)
|
33 |
-
kpss[:, :, 0] = np.clip(kpss[:, :, 0], 0, img.shape[1])
|
34 |
-
kpss[:, :, 1] = np.clip(kpss[:, :, 1], 0, img.shape[0])
|
35 |
-
vbboxes = bboxes.copy()
|
36 |
-
vbboxes[:, 0] = kpss[:, 0, 0]
|
37 |
-
vbboxes[:, 1] = kpss[:, 0, 1]
|
38 |
-
vbboxes[:, 2] = kpss[:, 4, 0]
|
39 |
-
vbboxes[:, 3] = kpss[:, 4, 1]
|
40 |
-
return bboxes, vbboxes
|
41 |
-
|
42 |
-
def visualize(image: np.ndarray, bboxes: np.ndarray, vbboxes: np.ndarray) -> list[np.ndarray]:
|
43 |
-
person_images = []
|
44 |
-
for i in range(bboxes.shape[0]):
|
45 |
-
bbox = bboxes[i]
|
46 |
-
x1, y1, x2, y2 = bbox
|
47 |
-
person_img = image[y1:y2, x1:x2]
|
48 |
-
|
49 |
-
# Convert numpy array to PIL Image and append
|
50 |
-
pil_img = Image.fromarray(person_img)
|
51 |
-
person_images.append(pil_img)
|
52 |
-
|
53 |
-
return person_images
|
54 |
-
|
55 |
-
detector = load_model()
|
56 |
-
detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640))
|
57 |
-
|
58 |
-
def detect(image: np.ndarray) -> list[np.ndarray]:
|
59 |
-
if image is None:
|
60 |
-
return []
|
61 |
-
|
62 |
-
image = image[:, :, ::-1] # RGB -> BGR
|
63 |
-
bboxes, vbboxes = detect_person(image, detector)
|
64 |
-
person_images = visualize(image, bboxes, vbboxes)
|
65 |
-
|
66 |
-
# Convert PIL images to numpy arrays and return
|
67 |
-
return [np.array(img) for img in person_images]
|
68 |
-
|
69 |
-
demo = gr.Interface(
|
70 |
-
fn=detect,
|
71 |
-
inputs=gr.Image(label="Input", type="numpy"),
|
72 |
-
outputs=gr.Gallery(label="Detected Persons"),
|
73 |
-
title=TITLE,
|
74 |
-
description=DESCRIPTION,
|
75 |
-
)
|
76 |
-
|
77 |
-
if __name__ == "__main__":
|
78 |
-
demo.queue(max_size=10).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
chromedb_service.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
import chromadb
|
6 |
+
from chromadb.config import Settings
|
7 |
+
|
8 |
+
# Fonction pour télécharger une image depuis une URL
|
9 |
+
def download_image(url):
|
10 |
+
response = requests.get(url)
|
11 |
+
if response.status_code != 200:
|
12 |
+
raise Exception(f"Erreur lors du téléchargement de l'image : {response.status_code}")
|
13 |
+
return Image.open(io.BytesIO(response.content))
|
14 |
+
|
15 |
+
# Fonction pour encoder une image en vecteurs à partir d'une URL
|
16 |
+
def encode_image_from_url(image_url):
|
17 |
+
image = download_image(image_url)
|
18 |
+
image = image.resize((224, 224)) # Redimensionner à 224x224
|
19 |
+
image_array = np.array(image) / 255.0 # Normaliser les valeurs des pixels
|
20 |
+
image_tensor = tf.convert_to_tensor(image_array, dtype=tf.float32)
|
21 |
+
image_tensor = tf.expand_dims(image_tensor, axis=0) # Ajouter une dimension pour le batch
|
22 |
+
|
23 |
+
# Charger le modèle MobileNet
|
24 |
+
model = tf.keras.applications.MobileNetV2(weights='imagenet', include_top=False, pooling='avg')
|
25 |
+
embeddings = model(image_tensor)
|
26 |
+
return embeddings.numpy()[0] # Retourner les vecteurs sous forme de tableau
|
27 |
+
|
28 |
+
# Ajouter une image dans ChromaDB
|
29 |
+
def add_image_to_chroma(collection_name, id, image_url, metadata):
|
30 |
+
vector = encode_image_from_url(image_url)
|
31 |
+
chroma_client = chromadb.Client(Settings(path="https://stable-diffusion-engine.oneiro-lego.com"))
|
32 |
+
collection = chroma_client.get_or_create_collection(
|
33 |
+
name=collection_name, dimension=len(vector)
|
34 |
+
)
|
35 |
+
collection.add(
|
36 |
+
ids=[id],
|
37 |
+
embeddings=[vector],
|
38 |
+
metadatas=[metadata]
|
39 |
+
)
|
40 |
+
print(f"Image {image_url} ajoutée avec succès !")
|
41 |
+
|
42 |
+
# Ajouter un document dans ChromaDB
|
43 |
+
def add_document(collection_name, id, text, metadata):
|
44 |
+
chroma_client = chromadb.Client(Settings(path="https://stable-diffusion-engine.oneiro-lego.com"))
|
45 |
+
collection = chroma_client.get_or_create_collection(name=collection_name)
|
46 |
+
collection.upsert(
|
47 |
+
documents=[text],
|
48 |
+
ids=[id],
|
49 |
+
metadatas=[metadata]
|
50 |
+
)
|
51 |
+
print(f"Document {id} ajouté avec succès !")
|
52 |
+
|
53 |
+
# Supprimer un document dans ChromaDB
|
54 |
+
def delete_document(collection_name, id):
|
55 |
+
chroma_client = chromadb.Client(Settings(path="https://stable-diffusion-engine.oneiro-lego.com"))
|
56 |
+
collection = chroma_client.get_or_create_collection(name=collection_name)
|
57 |
+
collection.delete(ids=[id])
|
58 |
+
print(f"Document {id} supprimé avec succès !")
|
59 |
+
|
60 |
+
# Supprimer une collection dans ChromaDB
|
61 |
+
def delete_collection(collection_name):
|
62 |
+
chroma_client = chromadb.Client(Settings(path="https://stable-diffusion-engine.oneiro-lego.com"))
|
63 |
+
chroma_client.delete_collection(name=collection_name)
|
64 |
+
print(f"Collection {collection_name} supprimée avec succès !")
|
65 |
+
|
66 |
+
# Recherche dans une collection
|
67 |
+
def search(collection_name, query, n_results):
|
68 |
+
chroma_client = chromadb.Client(Settings(path="https://stable-diffusion-engine.oneiro-lego.com"))
|
69 |
+
collection = chroma_client.get_or_create_collection(name=collection_name)
|
70 |
+
results = collection.query(
|
71 |
+
query_texts=[query],
|
72 |
+
n_results=n_results
|
73 |
+
)
|
74 |
+
return parse_chromadb_response(results)
|
75 |
+
|
76 |
+
# Analyse des réponses de ChromaDB
|
77 |
+
def parse_chromadb_response(response):
|
78 |
+
results = [
|
79 |
+
{
|
80 |
+
"id": response["ids"][0][i],
|
81 |
+
"distance": response["distances"][0][i],
|
82 |
+
"document": response["documents"][0][i],
|
83 |
+
"metadata": response["metadatas"][0].get(i)
|
84 |
+
}
|
85 |
+
for i in range(len(response["ids"][0]))
|
86 |
+
]
|
87 |
+
return results
|