Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ import insightface
|
|
9 |
import numpy as np
|
10 |
import onnxruntime as ort
|
11 |
from PIL import Image
|
|
|
12 |
|
13 |
TITLE = "insightface Person Detection"
|
14 |
DESCRIPTION = "https://github.com/deepinsight/insightface/tree/master/examples/person_detection"
|
@@ -43,15 +44,24 @@ def extract_persons(image: np.ndarray, bboxes: np.ndarray) -> list[np.ndarray]:
|
|
43 |
return person_images
|
44 |
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
detector = load_model()
|
47 |
detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640))
|
48 |
|
49 |
|
50 |
-
def detect(image: np.ndarray) -> list[
|
51 |
image = image[:, :, ::-1] # RGB -> BGR
|
52 |
bboxes = detect_person(image, detector)
|
53 |
person_images = extract_persons(image, bboxes) # Extract each person as a separate image
|
54 |
-
return [person_img[:, :, ::-1] for person_img in person_images] # BGR -> RGB
|
55 |
|
56 |
|
57 |
examples = sorted(pathlib.Path("images").glob("*.jpg"))
|
@@ -59,7 +69,7 @@ examples = sorted(pathlib.Path("images").glob("*.jpg"))
|
|
59 |
demo = gr.Interface(
|
60 |
fn=detect,
|
61 |
inputs=gr.Image(label="Input", type="numpy"),
|
62 |
-
outputs=gr.Gallery(label="Detected Persons"), #
|
63 |
examples=examples,
|
64 |
cache_examples=False, # Disable caching of examples
|
65 |
examples_per_page=30,
|
|
|
9 |
import numpy as np
|
10 |
import onnxruntime as ort
|
11 |
from PIL import Image
|
12 |
+
import io
|
13 |
|
14 |
TITLE = "insightface Person Detection"
|
15 |
DESCRIPTION = "https://github.com/deepinsight/insightface/tree/master/examples/person_detection"
|
|
|
44 |
return person_images
|
45 |
|
46 |
|
47 |
+
def convert_to_png(image: np.ndarray) -> bytes:
|
48 |
+
"""Convert a NumPy image array to a PNG byte stream."""
|
49 |
+
pil_image = Image.fromarray(image)
|
50 |
+
buffer = io.BytesIO()
|
51 |
+
pil_image.save(buffer, format="PNG")
|
52 |
+
buffer.seek(0)
|
53 |
+
return buffer.read()
|
54 |
+
|
55 |
+
|
56 |
detector = load_model()
|
57 |
detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640))
|
58 |
|
59 |
|
60 |
+
def detect(image: np.ndarray) -> list[bytes]:
|
61 |
image = image[:, :, ::-1] # RGB -> BGR
|
62 |
bboxes = detect_person(image, detector)
|
63 |
person_images = extract_persons(image, bboxes) # Extract each person as a separate image
|
64 |
+
return [convert_to_png(person_img[:, :, ::-1]) for person_img in person_images] # BGR -> RGB
|
65 |
|
66 |
|
67 |
examples = sorted(pathlib.Path("images").glob("*.jpg"))
|
|
|
69 |
demo = gr.Interface(
|
70 |
fn=detect,
|
71 |
inputs=gr.Image(label="Input", type="numpy"),
|
72 |
+
outputs=gr.Gallery(label="Detected Persons"), # Display multiple images in a gallery
|
73 |
examples=examples,
|
74 |
cache_examples=False, # Disable caching of examples
|
75 |
examples_per_page=30,
|