#!/usr/bin/env python from __future__ import annotations import cv2 import gradio as gr import huggingface_hub import insightface import numpy as np import onnxruntime as ort from PIL import Image TITLE = "insightface Person Detection" DESCRIPTION = "https://github.com/deepinsight/insightface/tree/master/examples/person_detection" def load_model(): path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx") options = ort.SessionOptions() options.intra_op_num_threads = 8 options.inter_op_num_threads = 8 session = ort.InferenceSession( path, sess_options=options, providers=["CPUExecutionProvider", "CUDAExecutionProvider"] ) model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, session=session) return model def detect_person( img: np.ndarray, detector: insightface.model_zoo.retinaface.RetinaFace ) -> tuple[np.ndarray, np.ndarray]: bboxes, kpss = detector.detect(img) bboxes = np.round(bboxes[:, :4]).astype(int) kpss = np.round(kpss).astype(int) kpss[:, :, 0] = np.clip(kpss[:, :, 0], 0, img.shape[1]) kpss[:, :, 1] = np.clip(kpss[:, :, 1], 0, img.shape[0]) vbboxes = bboxes.copy() vbboxes[:, 0] = kpss[:, 0, 0] vbboxes[:, 1] = kpss[:, 0, 1] vbboxes[:, 2] = kpss[:, 4, 0] vbboxes[:, 3] = kpss[:, 4, 1] return bboxes, vbboxes def visualize(image: np.ndarray, bboxes: np.ndarray, vbboxes: np.ndarray) -> list[np.ndarray]: person_images = [] for i in range(bboxes.shape[0]): bbox = bboxes[i] x1, y1, x2, y2 = bbox person_img = image[y1:y2, x1:x2] # Convert numpy array to PIL Image and append pil_img = Image.fromarray(person_img) person_images.append(pil_img) return person_images detector = load_model() detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640)) def detect(image: np.ndarray) -> list[np.ndarray]: if image is None: return [] image = image[:, :, ::-1] # RGB -> BGR bboxes, vbboxes = detect_person(image, detector) person_images = visualize(image, bboxes, vbboxes) # Convert PIL images to numpy arrays and return return [np.array(img) for img in person_images] demo = gr.Interface( fn=detect, inputs=gr.Image(label="Input", type="numpy"), outputs=gr.Gallery(label="Detected Persons"), title=TITLE, description=DESCRIPTION, ) if __name__ == "__main__": demo.queue(max_size=10).launch()