from __future__ import annotations import io import cv2 import gradio as gr import huggingface_hub import insightface import numpy as np import onnxruntime as ort from PIL import Image TITLE = "insightface Person Detection" DESCRIPTION = "https://github.com/deepinsight/insightface/tree/master/examples/person_detection" def load_model(): path = huggingface_hub.hf_hub_download("public-data/insightface", "models/scrfd_person_2.5g.onnx") options = ort.SessionOptions() options.intra_op_num_threads = 8 options.inter_op_num_threads = 8 session = ort.InferenceSession( path, sess_options=options, providers=["CPUExecutionProvider"] ) model = insightface.model_zoo.retinaface.RetinaFace(model_file=path, session=session) return model def detect_person( img: np.ndarray, detector: insightface.model_zoo.retinaface.RetinaFace ) -> tuple[np.ndarray, np.ndarray]: bboxes, kpss = detector.detect(img) bboxes = np.round(bboxes[:, :4]).astype(int) kpss = np.round(kpss).astype(int) kpss[:, :, 0] = np.clip(kpss[:, :, 0], 0, img.shape[1]) kpss[:, :, 1] = np.clip(kpss[:, :, 1], 0, img.shape[0]) vbboxes = bboxes.copy() vbboxes[:, 0] = kpss[:, 0, 0] vbboxes[:, 1] = kpss[:, 0, 1] vbboxes[:, 2] = kpss[:, 4, 0] vbboxes[:, 3] = kpss[:, 4, 1] return bboxes, vbboxes def visualize(image: np.ndarray, bboxes: np.ndarray, vbboxes: np.ndarray) -> np.ndarray: res = image.copy() for i in range(bboxes.shape[0]): bbox = bboxes[i] vbbox = vbboxes[i] x1, y1, x2, y2 = bbox vx1, vy1, vx2, vy2 = vbbox cv2.rectangle(res, (x1, y1), (x2, y2), (0, 255, 0), 1) alpha = 0.8 color = (255, 0, 0) for c in range(3): res[vy1:vy2, vx1:vx2, c] = res[vy1:vy2, vx1:vx2, c] * alpha + color[c] * (1.0 - alpha) cv2.circle(res, (vx1, vy1), 1, color, 2) cv2.circle(res, (vx1, vy2), 1, color, 2) cv2.circle(res, (vx2, vy1), 1, color, 2) cv2.circle(res, (vx2, vy2), 1, color, 2) return res def extract_persons(image: np.ndarray, bboxes: np.ndarray) -> list[Image.Image]: person_images = [] for bbox in bboxes: x1, y1, x2, y2 = bbox person_image = image[y1:y2, x1:x2] # Crop the detected person person_pil_image = Image.fromarray(person_image).convert('RGB') # Convert to RGB with io.BytesIO() as output: person_pil_image.save(output, format='PNG') # Save as PNG output.seek(0) # Move to the start of the BytesIO buffer person_pil_image = Image.open(output) # Reopen to ensure format person_images.append(person_pil_image) return person_images detector = load_model() detector.prepare(-1, nms_thresh=0.5, input_size=(640, 640)) def detect(image: np.ndarray) -> tuple[Image.Image, list[Image.Image]]: image = image[:, :, ::-1] # RGB -> BGR bboxes, vbboxes = detect_person(image, detector) res = visualize(image, bboxes, vbboxes) person_images = extract_persons(res, bboxes) return Image.fromarray(res[:, :, ::-1], 'RGB'), person_images # BGR -> RGB demo = gr.Interface( fn=detect, inputs=gr.Image(label="Input", type="numpy"), outputs=[gr.Image(label="Processed Image", type="numpy"), gr.Gallery(label="Detected Persons", type="numpy")], title=TITLE, description=DESCRIPTION, ) if __name__ == "__main__": demo.queue(max_size=10).launch()