Spaces:
Runtime error
Runtime error
Create app-api.py
Browse files- app-api.py +112 -0
app-api.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from PIL import Image
|
3 |
+
import base64
|
4 |
+
import io
|
5 |
+
import random
|
6 |
+
import uuid
|
7 |
+
import numpy as np
|
8 |
+
import spaces
|
9 |
+
import torch
|
10 |
+
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
11 |
+
|
12 |
+
|
13 |
+
# Créer une instance FastAPI
|
14 |
+
app = Flask(__name__)
|
15 |
+
|
16 |
+
def save_image(img):
|
17 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
18 |
+
img.save(unique_name)
|
19 |
+
return unique_name
|
20 |
+
|
21 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
22 |
+
if randomize_seed:
|
23 |
+
seed = random.randint(0, MAX_SEED)
|
24 |
+
return seed
|
25 |
+
|
26 |
+
MAX_SEED = np.iinfo(np.int32).max
|
27 |
+
|
28 |
+
if not torch.cuda.is_available():
|
29 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
|
30 |
+
|
31 |
+
MAX_SEED = np.iinfo(np.int32).max
|
32 |
+
|
33 |
+
USE_TORCH_COMPILE = 0
|
34 |
+
ENABLE_CPU_OFFLOAD = 0
|
35 |
+
|
36 |
+
|
37 |
+
if torch.cuda.is_available():
|
38 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
39 |
+
"fluently/Fluently-XL-v2",
|
40 |
+
torch_dtype=torch.float16,
|
41 |
+
use_safetensors=True,
|
42 |
+
)
|
43 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
44 |
+
|
45 |
+
|
46 |
+
pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
|
47 |
+
pipe.set_adapters("dalle")
|
48 |
+
|
49 |
+
pipe.to("cuda")
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
@spaces.GPU(enable_queue=True)
|
54 |
+
def generate(
|
55 |
+
prompt: str,
|
56 |
+
negative_prompt: str = "",
|
57 |
+
use_negative_prompt: bool = False,
|
58 |
+
seed: int = 0,
|
59 |
+
width: int = 1024,
|
60 |
+
height: int = 1024,
|
61 |
+
guidance_scale: float = 3,
|
62 |
+
randomize_seed: bool = False,
|
63 |
+
):
|
64 |
+
|
65 |
+
|
66 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
67 |
+
|
68 |
+
if not use_negative_prompt:
|
69 |
+
negative_prompt = "" # type: ignore
|
70 |
+
|
71 |
+
images = pipe(
|
72 |
+
prompt=prompt,
|
73 |
+
negative_prompt=negative_prompt,
|
74 |
+
width=width,
|
75 |
+
height=height,
|
76 |
+
guidance_scale=guidance_scale,
|
77 |
+
num_inference_steps=25,
|
78 |
+
num_images_per_prompt=1,
|
79 |
+
cross_attention_kwargs={"scale": 0.65},
|
80 |
+
output_type="pil",
|
81 |
+
).images
|
82 |
+
image_paths = [save_image(img) for img in images]
|
83 |
+
print(image_paths)
|
84 |
+
return image_paths, seed
|
85 |
+
|
86 |
+
@app.get("/")
|
87 |
+
def root():
|
88 |
+
return "Welcome to the Fashion Outfit "
|
89 |
+
|
90 |
+
# Route pour l'API REST
|
91 |
+
@app.route('/api/run', methods=['POST'])
|
92 |
+
def run():
|
93 |
+
data = request.json
|
94 |
+
print(data)
|
95 |
+
text = data['prompt']
|
96 |
+
negative_prompt = data['negative_prompt']
|
97 |
+
use_negative_prompt = data['use_negative_prompt']
|
98 |
+
guidance_scale = data['guidance_scale']
|
99 |
+
randomize_seed = data['randomize_seed']
|
100 |
+
result = generate(
|
101 |
+
prompt,
|
102 |
+
negative_prompt,
|
103 |
+
use_negative_prompt,
|
104 |
+
0,
|
105 |
+
1024,
|
106 |
+
1024,
|
107 |
+
guidance_scale,
|
108 |
+
randomize_seed)
|
109 |
+
return jsonify({'out': result})
|
110 |
+
|
111 |
+
if __name__ == "__main__":
|
112 |
+
app.run(host="0.0.0.0", port=7860)
|