Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
from transformers import AutoProcessor, CLIPModel
|
3 |
from PIL import Image
|
|
|
4 |
|
5 |
# Charger le modèle CLIP et le processeur
|
6 |
model = CLIPModel.from_pretrained("patrickjohncyh/fashion-clip")
|
@@ -15,6 +16,7 @@ app = Flask(__name__)
|
|
15 |
def classify_image_with_text(text, image):
|
16 |
# Effectuer la classification d'image à l'aide du texte
|
17 |
keywords = text.split(',')
|
|
|
18 |
inputs = processor(
|
19 |
text=keywords, images=image, return_tensors="pt", padding=True
|
20 |
)
|
@@ -25,6 +27,11 @@ def classify_image_with_text(text, image):
|
|
25 |
predicted_label = keywords[predicted_class_index]
|
26 |
return predicted_label
|
27 |
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
@app.get("/")
|
30 |
def root():
|
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
from transformers import AutoProcessor, CLIPModel
|
3 |
from PIL import Image
|
4 |
+
import base64
|
5 |
|
6 |
# Charger le modèle CLIP et le processeur
|
7 |
model = CLIPModel.from_pretrained("patrickjohncyh/fashion-clip")
|
|
|
16 |
def classify_image_with_text(text, image):
|
17 |
# Effectuer la classification d'image à l'aide du texte
|
18 |
keywords = text.split(',')
|
19 |
+
image = decode_image_from_base64(image)
|
20 |
inputs = processor(
|
21 |
text=keywords, images=image, return_tensors="pt", padding=True
|
22 |
)
|
|
|
27 |
predicted_label = keywords[predicted_class_index]
|
28 |
return predicted_label
|
29 |
|
30 |
+
# Fonction pour décoder une image encodée en base64 en objet PIL.Image.Image
|
31 |
+
def decode_image_from_base64(image_data):
|
32 |
+
image_data = base64.b64decode(image_data)
|
33 |
+
image = Image.open(io.BytesIO(image_data))
|
34 |
+
return image
|
35 |
|
36 |
@app.get("/")
|
37 |
def root():
|