Spaces:
Paused
Paused
import torch | |
from torchvision import transforms | |
from PIL import Image | |
import requests | |
import numpy as np | |
import gradio as gr | |
from io import BytesIO | |
from torchvision.models.segmentation import deeplabv3_resnet101 | |
import cv2 | |
# Step 1: Load the Image from URL | |
def load_image(url): | |
response = requests.get(url) | |
image = Image.open(BytesIO(response.content)).convert("RGB") | |
return image | |
# Step 2: Adjust Bounding Box to Add Margin | |
def adjust_bounding_box(bounding_box, margin=20): | |
return { | |
"x_min": max(0, bounding_box["x_min"] - margin), | |
"y_min": max(0, bounding_box["y_min"] - margin), | |
"x_max": bounding_box["x_max"] + margin, | |
"y_max": bounding_box["y_max"] + margin, | |
} | |
# Step 3: Crop Image Based on Bounding Box | |
def crop_image(image, bounding_box): | |
x_min, y_min, x_max, y_max = bounding_box.values() | |
return image.crop((x_min, y_min, x_max, y_max)) | |
# Step 4: Preprocessing for Segmentation Model | |
def preprocess_image(image, size=(1024, 1024)): | |
preprocess = transforms.Compose([ | |
transforms.Resize(size), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
return preprocess(image).unsqueeze(0) # Add batch dimension | |
# Step 5: Load a More Robust Pre-trained Model | |
def load_model(): | |
model = deeplabv3_resnet101(pretrained=True) # Switch to ResNet101 for better feature extraction | |
model.eval() # Set the model to evaluation mode | |
if torch.cuda.is_available(): | |
model = model.to("cuda") | |
return model | |
# Step 6: Perform Segmentation with Soft Masking | |
def segment_image(model, input_tensor): | |
if torch.cuda.is_available(): | |
input_tensor = input_tensor.to("cuda") | |
with torch.no_grad(): | |
output = model(input_tensor)['out'] # Model output | |
probabilities = torch.softmax(output, dim=1) # Get class probabilities | |
mask = probabilities[0, 1].cpu().numpy() # Assuming 1 corresponds to the object class | |
return mask | |
# Step 7: Refine Mask and Extract Object | |
def apply_mask(image, mask, threshold=0.75): | |
# Threshold the mask | |
mask = (mask > threshold).astype(np.uint8) | |
# Resize mask to the original image size | |
mask = cv2.resize(mask, image.size, interpolation=cv2.INTER_NEAREST) | |
# Apply morphological operations for a cleaner mask | |
kernel = np.ones((5, 5), np.uint8) | |
mask = cv2.dilate(mask, kernel, iterations=2) | |
mask = cv2.erode(mask, kernel, iterations=1) | |
# Create RGBA image | |
image_np = np.array(image) | |
rgba_image = np.zeros((image_np.shape[0], image_np.shape[1], 4), dtype=np.uint8) | |
rgba_image[..., :3] = image_np # Copy RGB channels | |
rgba_image[..., 3] = mask * 255 # Alpha channel based on refined mask | |
return Image.fromarray(rgba_image) | |
# Gradio Interface to handle input and output | |
def segment_object(image_url, x_min, y_min, x_max, y_max): | |
bounding_box = adjust_bounding_box({"x_min": x_min, "y_min": y_min, "x_max": x_max, "y_max": y_max}) | |
# Load and process the image | |
image = load_image(image_url) | |
cropped_image = crop_image(image, bounding_box) | |
input_tensor = preprocess_image(cropped_image) | |
# Load model and perform segmentation | |
model = load_model() | |
mask = segment_image(model, input_tensor) | |
# Apply mask to extract object | |
result_image = apply_mask(cropped_image, mask) | |
return result_image | |
# Set up the Gradio Interface | |
iface = gr.Interface( | |
fn=segment_object, | |
inputs=[ | |
gr.Textbox(label="Image URL", placeholder="Enter image URL..."), | |
gr.Number(label="x_min", value=100), | |
gr.Number(label="y_min", value=100), | |
gr.Number(label="x_max", value=600), | |
gr.Number(label="y_max", value=400), | |
], | |
outputs=gr.Image(label="Segmented Image"), | |
live=True | |
) | |
# Launch the interface | |
iface.launch() | |