Spaces:
Paused
Paused
import torch | |
from torchvision import models, transforms | |
from PIL import Image | |
import requests | |
import numpy as np | |
import gradio as gr | |
from io import BytesIO | |
import cv2 | |
# Step 1: Load the Image from URL | |
def load_image(url): | |
response = requests.get(url) | |
image = Image.open(BytesIO(response.content)).convert("RGB") | |
return image | |
# Step 2: Adjust Bounding Box to Add Margin | |
def adjust_bounding_box(bounding_box, margin=20): | |
return { | |
"x_min": max(0, bounding_box["x_min"] - margin), | |
"y_min": max(0, bounding_box["y_min"] - margin), | |
"x_max": bounding_box["x_max"] + margin, | |
"y_max": bounding_box["y_max"] + margin, | |
} | |
# Step 3: Crop Image Based on Bounding Box | |
def crop_image(image, bounding_box): | |
x_min, y_min, x_max, y_max = bounding_box.values() | |
return image.crop((x_min, y_min, x_max, y_max)) | |
# Step 4: Preprocessing for Segmentation Model | |
def preprocess_image(image): | |
transform = transforms.Compose([ | |
transforms.ToTensor(), # Convert to Tensor | |
]) | |
return transform(image).unsqueeze(0) # Add batch dimension | |
# Step 5: Load Mask R-CNN Model | |
def load_model(): | |
model = models.detection.maskrcnn_resnet50_fpn(pretrained=True) # Pre-trained Mask R-CNN | |
model.eval() # Set the model to evaluation mode | |
if torch.cuda.is_available(): | |
model = model.to("cuda") | |
return model | |
# Step 6: Perform Object Segmentation | |
def segment_image(model, input_tensor, confidence_threshold=0.6): | |
if torch.cuda.is_available(): | |
input_tensor = input_tensor.to("cuda") | |
with torch.no_grad(): | |
outputs = model(input_tensor) # Perform inference | |
# Process results: filter by confidence and get masks | |
scores = outputs[0]["scores"].cpu().numpy() | |
masks = outputs[0]["masks"].cpu().numpy() | |
boxes = outputs[0]["boxes"].cpu().numpy() | |
# Filter masks based on confidence threshold | |
filtered_masks = [masks[i, 0] for i in range(len(scores)) if scores[i] > confidence_threshold] | |
return filtered_masks | |
# Step 7: Combine Masks and Extract Object | |
def apply_masks(image, masks): | |
combined_mask = np.zeros((image.height, image.width), dtype=np.uint8) | |
for mask in masks: | |
resized_mask = cv2.resize(mask, (image.width, image.height), interpolation=cv2.INTER_NEAREST) | |
combined_mask = np.maximum(combined_mask, (resized_mask > 0.5).astype(np.uint8)) # Combine masks | |
# Create RGBA image | |
image_np = np.array(image) | |
rgba_image = np.zeros((image_np.shape[0], image_np.shape[1], 4), dtype=np.uint8) | |
rgba_image[..., :3] = image_np # Copy RGB channels | |
rgba_image[..., 3] = combined_mask * 255 # Alpha channel based on combined mask | |
return Image.fromarray(rgba_image) | |
# Gradio Interface to handle input and output | |
def segment_object(image_url, x_min, y_min, x_max, y_max): | |
bounding_box = adjust_bounding_box({"x_min": x_min, "y_min": y_min, "x_max": x_max, "y_max": y_max}) | |
# Load and process the image | |
image = load_image(image_url) | |
cropped_image = crop_image(image, bounding_box) | |
input_tensor = preprocess_image(cropped_image) | |
# Load model and perform segmentation | |
model = load_model() | |
masks = segment_image(model, input_tensor) | |
# Apply masks to extract objects | |
result_image = apply_masks(cropped_image, masks) | |
return result_image | |
# Set up the Gradio Interface | |
iface = gr.Interface( | |
fn=segment_object, | |
inputs=[ | |
gr.Textbox(label="Image URL", placeholder="Enter image URL..."), | |
gr.Number(label="x_min", value=100), | |
gr.Number(label="y_min", value=100), | |
gr.Number(label="x_max", value=600), | |
gr.Number(label="y_max", value=400), | |
], | |
outputs=gr.Image(label="Segmented Image"), | |
live=True | |
) | |
# Launch the interface | |
iface.launch() | |