Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,8 @@ import requests
|
|
5 |
import numpy as np
|
6 |
import gradio as gr
|
7 |
from io import BytesIO
|
8 |
-
from torchvision.models.segmentation import
|
|
|
9 |
|
10 |
# Step 1: Load the Image from URL
|
11 |
def load_image(url):
|
@@ -18,8 +19,8 @@ def crop_image(image, bounding_box):
|
|
18 |
x_min, y_min, x_max, y_max = bounding_box.values()
|
19 |
return image.crop((x_min, y_min, x_max, y_max))
|
20 |
|
21 |
-
# Step 3: Preprocessing for
|
22 |
-
def preprocess_image(image, size=(
|
23 |
preprocess = transforms.Compose([
|
24 |
transforms.Resize(size),
|
25 |
transforms.ToTensor(),
|
@@ -27,29 +28,38 @@ def preprocess_image(image, size=(256, 256)):
|
|
27 |
])
|
28 |
return preprocess(image).unsqueeze(0) # Add batch dimension
|
29 |
|
30 |
-
# Step 4: Load Pre-trained
|
31 |
def load_model():
|
32 |
-
model =
|
33 |
model.eval() # Set the model to evaluation mode
|
|
|
|
|
34 |
return model
|
35 |
|
36 |
# Step 5: Perform Segmentation
|
37 |
def segment_image(model, input_tensor):
|
|
|
|
|
38 |
with torch.no_grad():
|
39 |
output = model(input_tensor)['out'] # Model output
|
40 |
mask = output.argmax(dim=1).squeeze().cpu().numpy() # Get segmentation mask
|
41 |
return mask
|
42 |
|
43 |
-
# Step 6:
|
44 |
-
def apply_mask(image, mask
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
48 |
|
49 |
-
# Create RGBA image
|
|
|
50 |
rgba_image = np.zeros((image_np.shape[0], image_np.shape[1], 4), dtype=np.uint8)
|
51 |
rgba_image[..., :3] = image_np # Copy RGB channels
|
52 |
-
rgba_image[..., 3] =
|
|
|
53 |
return Image.fromarray(rgba_image)
|
54 |
|
55 |
# Gradio Interface to handle input and output
|
@@ -85,3 +95,4 @@ iface = gr.Interface(
|
|
85 |
|
86 |
# Launch the interface
|
87 |
iface.launch()
|
|
|
|
5 |
import numpy as np
|
6 |
import gradio as gr
|
7 |
from io import BytesIO
|
8 |
+
from torchvision.models.segmentation import deeplabv3_resnet101
|
9 |
+
import cv2
|
10 |
|
11 |
# Step 1: Load the Image from URL
|
12 |
def load_image(url):
|
|
|
19 |
x_min, y_min, x_max, y_max = bounding_box.values()
|
20 |
return image.crop((x_min, y_min, x_max, y_max))
|
21 |
|
22 |
+
# Step 3: Preprocessing for Segmentation Model
|
23 |
+
def preprocess_image(image, size=(512, 512)):
|
24 |
preprocess = transforms.Compose([
|
25 |
transforms.Resize(size),
|
26 |
transforms.ToTensor(),
|
|
|
28 |
])
|
29 |
return preprocess(image).unsqueeze(0) # Add batch dimension
|
30 |
|
31 |
+
# Step 4: Load a More Robust Pre-trained Model
|
32 |
def load_model():
|
33 |
+
model = deeplabv3_resnet101(pretrained=True) # Switch to ResNet101 for better feature extraction
|
34 |
model.eval() # Set the model to evaluation mode
|
35 |
+
if torch.cuda.is_available():
|
36 |
+
model = model.to("cuda")
|
37 |
return model
|
38 |
|
39 |
# Step 5: Perform Segmentation
|
40 |
def segment_image(model, input_tensor):
|
41 |
+
if torch.cuda.is_available():
|
42 |
+
input_tensor = input_tensor.to("cuda")
|
43 |
with torch.no_grad():
|
44 |
output = model(input_tensor)['out'] # Model output
|
45 |
mask = output.argmax(dim=1).squeeze().cpu().numpy() # Get segmentation mask
|
46 |
return mask
|
47 |
|
48 |
+
# Step 6: Refine Mask and Extract Object
|
49 |
+
def apply_mask(image, mask):
|
50 |
+
mask = cv2.resize(mask.astype(np.uint8), image.size, interpolation=cv2.INTER_NEAREST)
|
51 |
+
|
52 |
+
# Apply morphological operations for cleaner mask
|
53 |
+
kernel = np.ones((5, 5), np.uint8)
|
54 |
+
mask = cv2.dilate(mask, kernel, iterations=1)
|
55 |
+
mask = cv2.erode(mask, kernel, iterations=1)
|
56 |
|
57 |
+
# Create RGBA image
|
58 |
+
image_np = np.array(image)
|
59 |
rgba_image = np.zeros((image_np.shape[0], image_np.shape[1], 4), dtype=np.uint8)
|
60 |
rgba_image[..., :3] = image_np # Copy RGB channels
|
61 |
+
rgba_image[..., 3] = mask * 255 # Alpha channel based on refined mask
|
62 |
+
|
63 |
return Image.fromarray(rgba_image)
|
64 |
|
65 |
# Gradio Interface to handle input and output
|
|
|
95 |
|
96 |
# Launch the interface
|
97 |
iface.launch()
|
98 |
+
|