Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
4 |
+
import requests
|
5 |
+
import re
|
6 |
+
from bs4 import BeautifulSoup
|
7 |
+
|
8 |
+
# Hugging Face AI Model
|
9 |
+
MODEL_NAME = "roberta-base-openai-detector"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
11 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
12 |
+
|
13 |
+
# AI Content Detection Function
|
14 |
+
def detect_ai_content(text):
|
15 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
16 |
+
outputs = model(**inputs)
|
17 |
+
scores = torch.nn.functional.softmax(outputs.logits, dim=1)
|
18 |
+
return scores[0][1].item()
|
19 |
+
|
20 |
+
# Writing Style Analysis
|
21 |
+
def stylometry_analysis(text):
|
22 |
+
words = text.split()
|
23 |
+
avg_word_length = sum(len(word) for word in words) / len(words) if words else 0
|
24 |
+
complex_words_ratio = len([word for word in words if len(word) > 6]) / len(words) if words else 0
|
25 |
+
passive_voice_count = len(re.findall(r'\b(is|was|were|has been|have been|had been)\b \w+ed', text))
|
26 |
+
return {"avg_word_length": avg_word_length, "complex_words_ratio": complex_words_ratio, "passive_voice_count": passive_voice_count}
|
27 |
+
|
28 |
+
# Semantic Similarity Analysis
|
29 |
+
def semantic_analysis(text):
|
30 |
+
keywords = ["AI", "generated", "neural network", "LLM", "GPT", "transformer"]
|
31 |
+
ai_patterns = sum([text.lower().count(keyword) for keyword in keywords])
|
32 |
+
return ai_patterns / len(text.split()) if text.split() else 0
|
33 |
+
|
34 |
+
# Web Crawling for Plagiarism
|
35 |
+
def check_plagiarism(text):
|
36 |
+
search_url = f"https://www.google.com/search?q={'+'.join(text.split()[:10])}"
|
37 |
+
headers = {"User-Agent": "Mozilla/5.0"}
|
38 |
+
response = requests.get(search_url, headers=headers)
|
39 |
+
if response.status_code == 200:
|
40 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
41 |
+
links = [a["href"] for a in soup.find_all("a", href=True)]
|
42 |
+
return any("wikipedia" in link or "researchgate" in link or "arxiv" in link for link in links)
|
43 |
+
return False
|
44 |
+
|
45 |
+
# Streamlit UI
|
46 |
+
st.title("π Ultra-Advanced AI Content Detector")
|
47 |
+
st.write("π Detect whether the text is AI-generated or human-written.")
|
48 |
+
|
49 |
+
text_input = st.text_area("π Enter Text Below:", "")
|
50 |
+
|
51 |
+
if st.button("Analyze Text"):
|
52 |
+
ai_probability = detect_ai_content(text_input)
|
53 |
+
writing_features = stylometry_analysis(text_input)
|
54 |
+
semantic_score = semantic_analysis(text_input)
|
55 |
+
is_plagiarized = check_plagiarism(text_input)
|
56 |
+
|
57 |
+
is_ai_generated = (ai_probability > 0.5 or writing_features["complex_words_ratio"] > 0.4 or semantic_score > 0.2 or is_plagiarized)
|
58 |
+
|
59 |
+
st.subheader("π Analysis Results:")
|
60 |
+
st.write(f"πΉ AI Probability: {ai_probability:.2f}")
|
61 |
+
st.write(f"πΉ Writing Features: {writing_features}")
|
62 |
+
st.write(f"πΉ Semantic Score: {semantic_score:.2f}")
|
63 |
+
st.write(f"πΉ Plagiarism Detected: {'Yes' if is_plagiarized else 'No'}")
|
64 |
+
st.subheader("π§ Final Verdict:")
|
65 |
+
st.write("β
**Human-Written**" if not is_ai_generated else "β **AI-Generated**")
|