Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,27 @@
|
|
1 |
-
|
2 |
-
from datasets import load_dataset
|
3 |
-
|
4 |
-
|
5 |
-
# Load
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
def tokenize_function(examples):
|
29 |
-
return tokenizer(examples["text"])
|
30 |
-
|
31 |
-
def group_texts(examples):
|
32 |
-
# Concatenate all texts.
|
33 |
-
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
|
34 |
-
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
35 |
-
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can customize this part to your needs.
|
36 |
-
total_length = (total_length // tokenizer.max_len) * tokenizer.max_len
|
37 |
-
# Split by chunks of max_len.
|
38 |
-
result = {
|
39 |
-
k: [t[i : i + tokenizer.max_len] for i in range(0, total_length, tokenizer.max_len)]
|
40 |
-
for k, t in concatenated_examples.items()
|
41 |
-
}
|
42 |
-
return result
|
43 |
-
|
44 |
-
# Tokenize dataset
|
45 |
-
tokenized_datasets = combined_dataset.map(tokenize_function, batched=True, num_proc=4)
|
46 |
-
|
47 |
-
# Group texts into chunks of max_len
|
48 |
-
tokenized_datasets = tokenized_datasets.map(
|
49 |
-
group_texts,
|
50 |
-
batched=True,
|
51 |
-
num_proc=4,
|
52 |
-
)
|
53 |
-
|
54 |
-
# Train the model
|
55 |
-
trainer = Trainer(
|
56 |
-
model=model,
|
57 |
-
args=training_args,
|
58 |
-
train_dataset=tokenized_datasets,
|
59 |
-
tokenizer=tokenizer,
|
60 |
-
)
|
61 |
-
|
62 |
-
trainer.train()
|
63 |
-
|
64 |
-
# Save the trained model
|
65 |
-
trainer.save_model("PyStreamlitGPT")
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from datasets import load_dataset, concatenate_datasets
|
3 |
+
|
4 |
+
def load_and_combine_datasets():
|
5 |
+
# Load the datasets
|
6 |
+
python_codes_dataset = load_dataset('flytech/python-codes-25k', split='train')
|
7 |
+
streamlit_issues_dataset = load_dataset("andfanilo/streamlit-issues")
|
8 |
+
streamlit_docs_dataset = load_dataset("sai-lohith/streamlit_docs")
|
9 |
+
|
10 |
+
# Combine the datasets
|
11 |
+
combined_dataset = concatenate_datasets([python_codes_dataset, streamlit_issues_dataset, streamlit_docs_dataset])
|
12 |
+
return combined_dataset
|
13 |
+
|
14 |
+
def main():
|
15 |
+
st.title("Combined Dataset Viewer")
|
16 |
+
|
17 |
+
# Load and combine datasets
|
18 |
+
combined_dataset = load_and_combine_datasets()
|
19 |
+
|
20 |
+
# Display random sample from the combined dataset
|
21 |
+
random_sample = combined_dataset.shuffle(seed=42).select(range(10))
|
22 |
+
|
23 |
+
st.header("Random Sample from Combined Dataset")
|
24 |
+
st.write(random_sample)
|
25 |
+
|
26 |
+
if __name__ == "__main__":
|
27 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|